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It is the aim of this chapter to provide motivation and technical back-
ground on some of the key topics in Gabor analysis: the Gabor frame
operator, the notion of (dual) Gabor frames, the Janssen representation
of the Gabor frame operator, and the spreading function as a tool to
describe operators.

Starting from the context of finite dimensional signal spaces, as it
can be constructively realized on a computer and completely described
in terms of concepts from linear algebra, we describe first the algebraic
side of this problem. The second part of the material emphasizes the nec-
essary definitions and problems (e.g., the form of convergence of various
infinite series occurring during the discussion) and provides a description
of tools that have become relevant within modern time-frequency anal-
ysis in order to overcome the technical problems arising in the context
of Gabor analysis involving a continuous domain (such as the Euclidean
space). As it is shown, the so-called Banach Gelfand Triple built upon
the Segal Algebra S0(Rd) appears as the appropriate and universally
useful tool for a clear treatment of questions of time-frequency analysis,
even if the interest is mostly in operators over L2. On the other hand
a family of function (or distribution) spaces defined by means of time-
frequency tools (the so-called modulation spaces) appear to provide a
suitable frame-work for a more refined discussion of mathematical prob-
lems arising in this field.
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1. Introduction

The goal of this report is to provide an introduction to Gabor analysis, from
basic principles of linear algebra up to the foundations of advanced time-
frequency concepts for Gabor Analysis. In order to make the text accessible
both to engineers interested in the discrete side of Gabor analysis as well as
to mathematicians with a general background in functional analysis there
will be essentially two ways to read the article. One path leads directly from
linear algebra to “finite Gabor Analysis” (more precisely, Gabor analysis
for vectors of finite length m, which however are interpreted as periodic
sequences, resp. functions over the group of unit roots of order m), and
exploits the purely algebraic structure of Gabor systems. This rich structure
(e.g., the commutation relation for the frame matrix) implies the possibility
to efficiently compute the dual Gabor atom, respectively the bi-orthogonal
system, for a linearly independent Gabor family. Note that it is not far
from this problem to the discussion of applications of Gabor analysis in
the framework of wireless communication (OFDM [44] etc.). On the other
hand the numerical realization of the corresponding steps already leads to
discussions about the size of certain constants (i.e., the condition number
of the frame operator) which may be large (but still finite) in the finite
dimensional setting, but could be infinite in similar situations for functions
on the real line. Obviously, there the natural domain for Gabor Analysis are
the square integrable functions, i.e., the Hilbert space L2(R) respectively
in several dimensions L2(Rd).

In this context we are facing three additional aspects. The first one is the
infinite-dimensionality of the underlying space, and the necessary distinc-
tion between bounded and unbounded linear operators. As a consequence
there are injective mappings (such as the coefficient mapping with respect
to some family of elements in a Hilbert space) which do not have a closed
range, for example. Indeed, the Gabor system as suggested by D. Gabor in
1946 is such an example (of a total system of vectors, which is not a frame),
see [20]. These two possible shortcomings of a “generating system” result in
the need to require the existence of two constants (essentially equivalent to
the boundedness of the frame operator and its inverse). These requirements
lead to the concepts of a frame and Riesz bases respectively, which how-
ever are by now quite well understood and can be handled using standard
functional analytic concepts.
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The second difficulty stems from the fact that - unlike the continuously
defined short time Fourier transform (STFT) - a sampled STFT (the start-
ing point of Gabor Analysis) for general L2-windows comes in conflict with
the (boundedness) requirements coming in naturally on functional analytic
reasons as discussed above. Moreover, one expects in a continuous domain
that dual Gabor windows depend continuously on the Gabor atom and the
lattice constants in use, and also that the sum describing the frame op-
erator in the Janssen representation converges absolutely. All this can be
granted by assuming that atoms are exclusively taken from the Segal Alge-
bra S0(Rd), also called Feichtinger’s algebra in the literature. It may be not
surprising that this space in turn can be defined by means of the STFT, and
that it is characterized in the context of Gabor analysis as the collection
of those continuous and integrable functions which have - with respect to
almost any “nice” Gabor frame - an absolutely convergent Gabor expan-
sion. We will devote some paragraph to the discussions of this space and
its properties, but even more so to point out how useful it is in the context
of Gabor analysis (and time-frequency analysis in general). It shares many
essential properties with the more widely known Schwartz space of “rapidly
decreasing functions”. Among others it is Fourier invariant, and hence its
dual space is a natural domain for an extended Fourier transform. On the
other hand it is a simple Banach space with respect to a very natural norm
and provides an answer to the problems mentioned above (and many more).
The “simple distributions” (one might call the elements of S0(Rd) by this
name) are however good enough to prove a kernel theorem and to establish
a so-called Banach Gelfand Triple (BGT), consisting of the Banach space
of test functions S0(Rd), the (usual) Hilbert space L2(Rd) and the (simple)
distribution space S′0(Rd). It is quite intuitive to think of these three layers
“melted together” in the finite dimensional case, but essentially different in
the continuous domain. For example, one can describe the Fourier transform
on Rd as a (unitary) Gelfand triple isomorphism, with the nice fact that
the ordinary integral representation of the Fourier transform makes sense
(and also the inversion theorem in the pointwise sense) for functions from
S0(Rd). On the other hand, its behavior at the level of the Hilbert space
allows to express the fact that it is unitary, hence preserving angles and L2-
norms. Finally one can claim (at the distributional level) that the Fourier
transform maps “pure frequencies” onto the corresponding Dirac-measures
(which take of course the role of unit vectors), and that the Fourier trans-
form is uniquely determined (as Gelfand triple isomorphism) by this fact.
There are more such Gelfand triple isomorphisms, but we will exploit only
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the “spreading mapping” a bit more closely, in order to describe the fact
that every linear mapping (from S0 to S′0) is a superposition of TF-shift
operators (in a certain sense), while any Gabor frame operator is a (dis-
crete) sum of TF-shifts (the abstract version of Janssen’s theorem). In this
context we will heavily make use of the so called fundamental relation for
Gabor Analysis (FIGA).

The third new point arising in the context of the real line (as opposed
to the finite dimensional situation, where any two norms are equivalent) is
the need to make a distinction between “good” and “nasty” functions, e.g.
using notations related to summability (Lp-spaces in the classical setting of
Fourier analysis), smoothness or decay at infinity. One expects that a good
frame consisting of “nice atoms” has the property that smooth functions
with strong decay at infinity require only a small number of non-zero terms
for a good approximation. This is perfectly realized for the classical Besov
– Triebel – Lizorkin spaces with respect to “good” wavelet systems and
the complete characterization of those spaces via wavelet coefficients is an
important aspect of modern wavelet theory. In turn, the “correct” function
spaces in the time-frequency context are modulation spaces, introduced in
the early eighties. Since they are exactly the spaces of distributions with
Gabor coefficients in `p, the modulation spaces M0

p,p play an important
role in time-frequency analysis. As with the case of the classical theory of
Lp-spaces the three special cases p = 1, 2,∞ are the most interesting ones,
and can be described with less technical effort compared to the more gen-
eral, by now “classical modulation spaces” Ms

p,q, which have been modelled
in analogy to standard Besov spaces. Since M0

1,1 is just the Segal algebra
S0 and its dual M0

∞,∞ coincides with S′0, we will restrict our attention
to these spaces, which make up a Banach Gelfand Triple together with
M0

2,2 = L2. Let us mention however here that this restriction was chosen in
order to limit the level of technicality of our presentation, although many
of the results involving these spaces carry over to the more general mod-
ulation spaces (derived from general solid and translation invariant spaces
over phase space) as described by the general coorbit theory developed by
Feichtinger and Gröchenig in the late eighties [12].

2. Basics in linear algebra

Assume that a signal f is a (column) vector of m complex numbers. Given
a family of (column) vectors g1, . . . , gn in Cm we are looking for a linear
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combination of these vectors that reproduces f or comes close to f . In other
words, we are looking for a coefficient vector c in Cn such that

f ∼ c(1)g1 + · · ·+ c(n)gn . (1)

We can transfer this problem to matrix notation. Let A be the matrix of
size m × n whose j-th column is gj . Then equation (1) boils down to the
matrix vector product

f ∼ Ac .

In the context of the linear mapping c 7→ Ac induced by A from Cn (the
coefficient space) to Cm (the signal space), there exist coefficient vectors
exactly reproducing f if and only if f is in the range of A, write R(A),
which obviously coincides with the linear span of g1, . . . , gn respectively
the column-space of A.

So far we have defined the problem and built a simple mathematical
model. In order to obtain a better understanding of our problem we need
a few basic facts from linear algebra.

A family of vectors g1, . . . , gn is said to be linearly independent if

a(1)g1 + · · ·+ a(n)gn = 0

implies a(1) = ... = a(n) = 0. Otherwise the family is linearly dependent.
Obviously linear independence is another way of expressing the injectivity
of the linear mapping induced by A. The rank of a matrix A, write r(A),
is the maximal number of linearly independent rows. Important properties
are:

(1) r(A) = r(A′) where A′ denotes the transpose conjugate of A.
(2) r(A) coincides with the dimension of R(A).
(3) A of size m× n is surjective, i.e., R(A) = Cm, if and only if r(A) = m.

We see that imposing r(A) = m requires n ≥ m which is always the case of
frames discussed below. In this case, for every f ∈ Cm, there exists at least
one coefficient vector c such that Ac = f . We are interested in how to find
such a coefficient vector.

An easy exercise shows that the nullspaces of A and AA′ coincide and
therefore A has maximal rank r(A) = m if and only if AA′ is invertible.
For r(A) = m it follows that A′(AA′)−1 is well-defined and we can see that

c = A′(AA′)−1f
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provides a suitable coefficient vector for reproducing f .

The matrix A′(AA′)−1 is known as the pseudo-inverse of A (whose size
is n×m) [23]. Every matrix has a pseudo-inverse which can be computed
by the singular value decomposition. In the singular value decomposition
the matrix A is decomposed as

A = UΣV ′ ,

where the (first r(A)) columns of the matrix U are an orthonormal system
for the range of A, Σ is a diagonal matrix with the singular values of
A (i.e., the eigenvalues of AA′) in its diagonal, and V is a well-chosen
orthonormal system of Cn. An excellent introduction for the singular value
decomposition can be found in [4]. The standard approach for computing
the singular value decomposition of a m×n matrix A (m ≤ n) is as follows:

(1) Compute the eigenvalues of AA′ = V ΛV ′.
(2) Let Σ be the m× n nonnegative square root of Λ.
(3) Solve the system UΣ = AV for unitary U (e.g., via QR-factorization).

The above case with r(A) = m and m ≤ n is just a special case for com-
puting a pseudo-inverse.

The question about the uniqueness of the coefficient vector c can be
answered as follows. Whenever n > m, the family g1, . . . , gn is linearly
dependent and any g can be written as a linear combination of the others.
Therefore we could, for instance, change one single coefficient and adapt
the others such that we recover f . Hence, c is not unique. The coefficients
obtained via the pseudo-inverse are of minimal `2-norm (minimal length).
In other words, the pseudo-inverse, applied to the right hand side of a linear
problem of the form Ac = f provides the minimal least square solution to
this problem.

On the other hand, if m = n, then A (assumed to be surjective) is
also injective and the difference between c and any other coefficient vec-
tor reproducing f must be in the kernel of A which contains only the zero
vector. Hence c is unique. Equivalently we could argue that if m = n then
the family g1, . . . , gn is linearly independent and, thus, it constitutes a ba-
sis for R(A) allowing only unique representations. In the latter case, the
pseudo-inverse turns into the standard inverse of A.

Let us come back to the matrix product A′(AA′)−1. If we consider the
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complex conjugate of the rows of the pseudo-inverse A′(AA′)−1 and write
them as column vectors, we obtain another family of n vectors in Cm, say
g̃1, . . . , g̃n. As a consequence, we have for all f ∈ Cm

f = AA′(AA′)−1f =
n∑

j=1

〈f, g̃j〉gj , (2)

where 〈·, ·〉 denotes the standard inner product in Cn. By interchanging the
roles of g1, . . . , gn and g̃1, . . . , g̃n, a simple argument yields

f = (AA′)−1AA′f =
n∑

j=1

〈f, gj〉g̃j . (3)

This shows that the families {gj} and {g̃j} are dual to each other in the
sense that one system provides a left inverse of the other. In the case m =
n this is just the dual basis, which in the case of an orthonormal basis
coincides with the original system, which amounts to A being unitary.

Besides decomposing a signal, the question of recovering a signal from
a coefficient vector is of equal interest in application. That is, given coef-
ficients of the form 〈f, gj〉 of a signal f with respect to some basic family
{gj}, we want to recover the signal f . Fortunately, this can be treated as
the dual problem of finding the right coefficients for the corresponding rep-
resentation. Indeed, in the case where the analyzing family {gj} constitutes
a frame, we recover the signal by using a dual frame {g̃j} as shown in (3).

For practical applications, the numerical properties of the analysis and
synthesis mapping are of great importance. These are reflected in the sin-
gular values of the matrix A. The singular values coincide with the square
root of the eigenvalues of the positive matrix AA′. Specifically, we are inter-
ested in the quotient between the maximal amax and the minimal singular
value amin. This quotient is the condition number of A and indicates the
computational goodness of the algebraic system Ac = f .

Let us consider, for example, the family e1, e1 + 10−ke2, (e1, e2 denote
the standard unit vectors in C2) which is obviously linearly independent in
C2. For constructing e2, the length of the coefficients is more than 10k times
larger compared to the length of the coefficients for the standard basis. This
family is rather badly conditioned.

The minimal and maximal singular value of A are the optimal constants

7



August 5, 2005 22:6 WSPC/Lecture Notes Series: 9in x 6in FGabsingFinal

in the following inequality:

amin‖f‖2 ≤ 〈AA′f, f〉 =
n∑

j=1

|〈f, gj〉|2 ≤ amax‖f‖2 (4)

for all f ∈ Cm. Inequality (4) is the so-called frame inequality (stated in
the finite setting). Any family g1, . . . , gn satisfying (4) is called a frame for
Cm and the lower and upper bounds are the corresponding frame bounds.
This concept will play a crucial role in the continuous “time”-variables.

In the case of amin = amax, the family g1, . . . , gn is called a tight frame,
which behaves almost like an orthogonal basis though it might be linearly
dependent. Every frame g1, . . . , gn can be converted into the tight frame
S−1/2g1, . . . , S

−1/2gn, where S−1/2 is the square root of the inverse of the
so-called frame operator S = AA′. This square root can be obtained via the
singular value decomposition of S by simply replacing the singular values by
their inverse square root. A simple computation shows that for A = UΣV ′,
the columns of the matrix UV ′ constitute the above described tight frame
S−1/2g1, . . . , S

−1/2gn.

All these objects have an analogue description for continuous signals
in L2 as described in Section 4. But before, we discuss a particular choice
of a basic system that enjoys a lot of structure which in turn induces fast
numerical algorithms. In order to better understand this structure we have
to describe the theory in a more abstract setting, which requires an exten-
sion of the underlying mathematical objects based on classical results in
functional analysis.

3. Finite dimensional Gabor analysis

In the following we build a special family of basic vectors in Cm in order to
decompose and recover signals of length m as described in the previous sec-
tion. To this end we essentially take a single vector and derive the remaining
basic vectors by regular cyclic shifts and modulations of this vector. In this
way, we obtain a highly structured system.

First we introduce the basic notations. For convenience, a vector f in
Cm is periodically extended on Z via

f(k + qm) = f(k) , q ∈ Z .

The index set of a vector can be identified with the finite group Zm =
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{1, . . . , m} and all indices exceeding m are understood modulo m (with-
out explicit notation). In this sense, cyclic shifts are just another form of
“ordinary shifts” on periodic functions.

The (index) translation operator Tk that rotates the index of a vector by
k and the (frequency) modulation operator Ml that performs a frequency
shift by l have the following matrix entries with respect to the standard
basis in Cm:

(Tk)uv = δu+k,v and (Ml)uv = e2πi(u−1)l/mδu,v ,

where δ denotes the Kronecker symbol.

By simply applying the product of these matrices to an arbitrary vector
f = (f(1), . . . , f(m))t we see that they do not commute in general:

MlTkf =
(
f(k + 1), . . . , w(m−k)l

m f(m), w(m−k+1)l
m f(1), . . . , w(m−1)l

m f(k)
)t

,

TkMlf =
(
wkl

mf(k + 1), . . . , w(m−1)l
m f(m), f(1), . . . , w(k−1)l

m f(k)
)t

,

where wm = e2πi/m. We use the symbol t to indicate column vectors.

For a more compact description, we write for the time-frequency shift
(first a time-shift is applied, and then the modulation corresponding to
frequency shift):

π(λ) = MlTk with λ = (k, l) ∈ Zm × Zm .

Note that π(λ) are unitary matrices, i.e., π(λ)−1 = π(λ)′. From the relation
between MlTk and TkMl, we can easily derive the commutation rule

π(λ1)π(λ2) = e2πi(l1k2−k1l2)π(λ2)π(λ1) . (5)

Because of (5), the set of time-frequency shift matrices do not constitute a
(multiplicative) group. However, by taking into account this commutation
property, time-frequency shift operations can be extended in such a way
that they finally constitute a group, namely the so-called Heisenberg group
[25].

Next we introduce the announced basic system whose structure is heav-
ily based on this commutation rule. Given a lattice (subgroup) Λ in Zm×Zm

and a vector g in Cm, we say that the family {gλ}λ∈Λ defined by

gλ = π(λ)g, λ ∈ Λ,
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is a (discrete) Gabor frame if it spans all Cm. The associated frame matrix
is the positive definite matrix S given by

Sf = GG′f =
∑

λ∈Λ

〈f, gλ〉gλ .

Every Gabor frame induces a dual frame as described in the previous sec-
tion. For Gabor frames, however, the computation of the canonical dual
can be reduced to the solution of a single linear equation of the form

Sh = g (6)

because then the dual frame is simply given by {π(λ)h}λ∈Λ which makes
Gabor frames so attractive for applications. This statement follows easily
from the observation that the Gabor frame matrix commutes with all time-
frequency shifts π(λ), λ ∈ Λ, (and so does S−1) since Λ is supposed to
be a group and the factor in (5) simply drops out. What we obtain is the
following Gabor representation of a signal f ∈ Cm:

f =
∑

λ∈Λ

〈f, π(λ)h〉π(λ)g =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)h . (7)

The Gabor representation shows also how we can reconstruct a signal from
the coefficient vector 〈f, π(λ)g〉, λ ∈ Λ, which corresponds to the short-time
Fourier transform (STFT) Vgf of f with respect to the window g, short

Vgf(k, l) = 〈f, π(k, l)g〉 =
m∑

j=1

f(j)g(j + k)e−2πijl/m ,

sampled on the lattice Λ. This leads to the dual perspective in which we ask
how we can recover f from samples of its STFT. As seen in the previous
section, the frame approach of (7) already gives a satisfactory answer to
the dual problem.

Frames, and in particular Gabor frames, are in general linearly depen-
dent, which basically means that not all coefficient information is needed
for completely recovering the signal. Indeed, if, for example, one sample of
the sampled short-time Fourier transform is missing, say the one indexed
by λo, we can still reconstruct f since {π(λ)g}λ∈λ∈Λ\λo

is a frame because
of the underlying group structure. In this case, however, the dual frame can
not be expected to be derived from a single vector.

Equation (6) reveals that one of the most important objects in Gabor
analysis is the frame matrix S. Indeed, many studies in this field have
been devoted to this operator not only for a better understanding of Gabor
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systems but also for designing fast numerical inversion schemes. In the last
part of this section we give a small insight to fundamental results of the
Gabor frame matrix.

We start with the special case of so-called separable lattices of the form
Λ = αZm × βZm where α and β are divisors of m. We define α̃ = m/α

and β̃ = m/β. (The case that αβ divides m corresponds to integer over-
sampling.) Due to the fact that

∑β̃−1
m=0 e2πijmβ/m = 0 if j does not divide

β̃, the jl-th element of the frame matrix S is simply given by

(S)jl =





β̃
∑α̃−1

n=0 g(j − αn)g(l − αn) if |j − l| is divided by β̃

0 otherwise ,
(8)

which is called the Walnut representation of S for the discrete case [36].
The discrete Walnut representation implies the following properties of S:

(1) Only every β̃-th subdiagonal of S is non-zero.
(2) Entries along a subdiagonal are α-periodic.
(3) S is a block circulant matrix of the form

S =




A0 A1 . . . Aα̃−1

Aα̃−1 A0 . . . Aα̃−2

...
...

. . .
...

A1 A2 . . . A0




where As are non-circulant α× α matrices, with

(As)j,l = (S)j+sα,l+sα (9)

for s = 0, 1, . . . , α̃− 1 and j, l = 0, 1, . . . , α− 1, [41].

This special case applies merely for separable lattices. In general, however,
we have another powerful representation of the frame matrix, the so-called
Janssen representation.

For a better understanding of the Janssen representation in finite di-
mension we introduce the Frobenius norm for m× n matrices

‖A‖Fro =
( m∑

i=1

n∑

j=1

|aij |2
)1/2

=
√

tr(A′A)

where the trace tr(B) of B is the sum of its diagonal entries. (The Frobenius
norm corresponds to the Hilbert-Schmidt norm in infinite dimension.) The
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Frobenius norm can be derived from the inner product

〈A,B〉Fro =
m∑

i=1

n∑

j=1

aijbij . (10)

It can easily be seen that the matrix family {π(λ)}λ∈Zm×Zm
of all possible

time-frequency shifts on Cm constitutes an orthogonal system with respect
to 〈·, ·〉Fro in the space of all complex valued m×m matrices, denoted by
M(m). The system becomes orthonormal for the inner product

〈A,B〉F =
1
m
〈A,B〉Fro .

As a consequence, every matrix in (M(m), 〈·, ·〉F ) has a unique expansion
(time-frequency representation) with respect to the orthonormal system
{π(λ)}λ∈Zm×Zm (the coefficients corresponding to the spreading function).

Also the frame matrix S of a Gabor frame can be decomposed with
respect to all time-frequency shift matrices. This representation can be
simplified due to the special structure of S as we will see in the following.

We define the adjoint lattice Λ◦ of Λ to consist of all tuples of elements
in Zm × Zm for which

π(λ)π(λ◦) = π(λ◦)π(λ) (11)

holds. Remark that Λ◦ is indeed an (additive) subgroup (lattice) of Zm. In
particular, according to (5), we must have

e2πi(kl◦−k◦l)/m = 1 (12)

for all λ = (k, l) and λ◦ = (k◦, l◦).

We observe that the Gabor frame matrix S commutes with all time-
frequency shifts π(λ) with λ ∈ Λ. Combining the commutation rule (5) with
the uniqueness of the time-frequency representation immediately induces,
that the only coefficients that might be different from zero are those related
to the dual lattice Λ◦. Therefore, we have

S =
∑

λ◦∈Λ◦
cλ◦π(λ◦) (13)

which is the so-called Janssen representation of S. The coefficients are ac-
tually given by the restriction of the short time Fourier transform to the
dual lattice, i.e.,

cλ◦ = 〈S, π(λ◦)〉F =
n

m
〈g, π(λ◦)g〉 =

n

m
Vgg(λ◦) (14)
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where n denotes the order of Λ. In order to derive the relation between the
coefficients in (13) and the (discrete) STFT Vg(g) we note that

(S)jk = (GG′)jk =
∑

λ∈Λ

e2πi(j−k)sλ/mg(j + rλ)g(k + rλ)

where λ = (rλ, sλ) and

(π(λ◦))jk = e2πi(j−1)s◦/mδj+r◦,k .

Now we compute

〈S, π(λ◦)〉F =
1
m

m∑

j=1

m∑

k=1

(S)jk(π(λ◦))jk =

1
m

m∑

j=1

m∑

k=1

( ∑

λ∈Λ

e2πi(j−k)sλ/mg(j + rλ)g(k + rλ)
)
e−2πi(j−1)s◦/mδj+r◦,k =

1
m

m∑

j=1

∑

λ∈Λ

e−2πir◦sλ/mg(j + rλ)g(j + r◦ + rλ)e−2πi(j−1)s◦/m =

1
m

∑

λ∈Λ

e2πi(rλs◦−r◦sλ)/m︸ ︷︷ ︸
(12)
= 1

m∑

j=1

g(j)g(j + r◦)e−2πi(j−1)s◦/m =

n

m

m∑

j=1

g(j)
(
π(λ◦)g

)
(j) =

n

m
〈g, π(λ◦)g〉 .

The coefficients (cλ◦)λ◦∈Λ◦ are called the Janssen coefficients of S.

Relation (14) gives rise to efficient computations of the so-called Janssen
coefficients by using the standard fast Fourier transform for the STFT.

The coefficients of the time-frequency expansion correspond to the so-
called spreading function which will be introduced later in the continuous
framework and has revealed many new insights into the study of Gabor
analysis.

The ratio n/m denotes the redundancy of the Gabor frame. In case of
maximal redundancy m, i.e., Λ = Zm × Zm, the Gabor frame operator
reduces to a multiple of the identity, according to the Janssen representa-
tion, and corresponds to a tight frame in which the synthesis Gabor atom

13
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coincides with the canonical analysis atom. This situation simply reflects
the full STFT and its inversion formula in analogy to the continuous case.

Having two Gabor systems {gλ} and {γλ}, the corresponding frame type
operator Sγ,g = ΓG′ does also commute with all π(λ) and we again have

Sγ,g =
∑

λ◦∈Λ◦
cλ◦π(λ◦)

with cλ◦ = n
mVγ(g)(λ◦) = n

m 〈γ, π(λ◦)g〉 which implies that g and γ are dual
frames if and only if 〈γ, π(λ◦)g〉 = δ0,λ◦ , λ◦ ∈ Λ◦ (Wexler-Raz identity).

All the stated results have an analogue description for continuous sig-
nals (where the signal space is infinite dimensional). However, convergence
problems (not occurring in finite dimension) require a careful treatise of this
subject. In our next section we discuss basic functional analytic principles
that allow to generalize the Gabor concept to continuous signals mainly by
controlling convergence issues.

4. Frames and Riesz bases

Let {gk}k∈Z be a family in an infinite dimensional (separable) Hilbert space
H with inner product 〈·, ·〉. The classical examples are the Hilbert space L2

of (equivalence classes of measurable) functions of finite energy (L2-norm)
and the sequence space `2 consisting of square summable complex-valued
sequences. Similar to the finite dimensional case, we want to represent a
signal f in H as a (now possibly infinite) linear combination of the form

f ∼
∑

k

ckgk .

At this point there a several questions that arise naturally when consider-
ing an infinite sum. First, by convention, we want the sum to converge in
the (prescribed) Hilbert-norm, i.e., limK→∞ ‖f −∑K

k=1 ckgk‖ −→ 0 . Sec-
ondly, the sum should converge to the same limit (preferably f) regardless
of the summation order we choose (known as unconditional convergence).
A more subtle point is that we would like to have a continuous linear de-
pendency between the signal f and the coefficients ck in order to avoid
pathological cases in which small alterations in the signal result in uncon-
trollable changes in the corresponding coefficient sequence and vice-versa.
This technical detail accounts for numerical stability.

14
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Obviously, all these requirements are trivially fulfilled in the finite di-
mensional case. For an infinite family {gk}, however, these assumptions
have to be ensured before dealing with decomposition and reconstruction
issues. Fortunately, there exist concepts in functional analysis that do ex-
actly fit this kind of requirements. For a precise description we need the
following definitions.

Definition 1: A family {gk} of a Hilbert space H is complete in H if the
set of finite linear combinations of {gk}, write span(gk), is dense in H, i.e.,
every f in H can be arbitrarily well approximated by elements in span(gk)
with respect to the H-norm.

In the mathematical literature complete systems are often called “total”.
The definition makes no claim about the “cost” of approximation. In other
words, it is allowed to use more and more complicated coefficient sequences
as the approximation quality is increased. In particular, total families do
not necessarily allow a series expansion of arbitrary elements from the given
Hilbert space.

Definition 2: The family {gk} of a Hilbert space H is a basis for H if for
all f ∈ H there exists unique scalars ck(f) such that

f =
∑

k

ck(f)gk .

In contrast to complete sequences, a basis always induces a series expansion.

Definition 3: The sequence {gk} in a Hilbert space H is called a Bessel
sequence if

∑

k

|〈f, gk〉|2 < ∞ , f ∈ H .

Definition 4: A family {gk} of a Hilbert space H is a Riesz sequence if
there exist bounds A, B > 0 such that

A‖c‖2`2 ≤
∥∥∥

∑

k

ckgk

∥∥∥
2

≤ B‖c‖2`2 , c ∈ `2 .

Riesz sequences preserve many properties of orthonormal sets [5]. A Riesz
sequence which generates all H is called a Riesz basis for H. Riesz bases

15



August 5, 2005 22:6 WSPC/Lecture Notes Series: 9in x 6in FGabsingFinal

are somehow ”distorted” orthonormal bases as described in the following
lemma which reveals all useful properties of a Riesz basis [27].

Lemma 5: Let {gk} be a sequence in a Hilbert space H. The following are
equivalent.

(1) {gk} is a Riesz basis for H.
(2) {gk} is an unconditional basis for H and gk are uniformly bounded.
(3) {gk} is a basis for H, and

∑
k ckgk converges if and only if

∑
k |ck|2

converges.
(4) There is an equivalent inner product on H for which {gk} is an or-

thonormal basis for H.
(5) {gk} is a complete Bessel sequence and possesses a bi-orthogonal system

{hk} that is also a complete Bessel sequence.

The last item of the lemma says that there exists a unique sequence {hk}
such that 〈gk, hj〉 = δkj which, combined with the second statement, in-
duces the representation

f =
∑

k

〈f, hk〉gk =
∑

k

〈f, gk〉hk , f ∈ H .

Hence, Riesz bases are potential candidates for our purpose of signal rep-
resentation. We point out that the coefficient sequence is always square
summable which is an important stability criterion. In the next section
we will give an example of a basis which is not stable, i.e., the coefficient
sequence is not summable at all for special examples.

So far, the systems we are considering allow only unique expansions
with respect to the coefficients. In applications it is sometimes more useful
to weaken this property. This can be obtained by looking for overcomplete
(linearly dependent) sets which is implemented in the concept of frames
introduced by Duffin and Schaeffer in 1952 [11].

Definition 6: A family {gk} of a Hilbert space H is a frame of H if there
exist bounds A, B > 0 such that

A‖f‖2 ≤
∑

k∈Z
|〈f, gk〉|2 ≤ B‖f‖2 , f ∈ H . (15)

If A = B, then {gk}k∈Z is called a tight frame.
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The synthesis map G : `2 → H of a frame {gk} is defined by

G : (ck) →
∑

k

ckgk .

Its adjoint G∗ is the analysis operator G∗f = (〈f, gk〉). The frame operator
S is defined by

Sf = GG∗f =
∑

k∈Z
〈f, gk〉gk , f ∈ H .

By (15), the frame operator satisfies

A〈f, f〉 ≤ 〈Sf, f〉 ≤ B〈f, f〉 , f ∈ H ,

and is, therefore, bounded, positive, and invertible. The inverse operator
S−1 is obviously also positive and has therefore a square root S−1/2 (self-
adjoint), [39]. It follows that the sequence {S−1/2gk} is a tight frame with
A = B = 1.

Every orthonormal basis of H is a Riesz basis of H and every Riesz basis
of H is also a frame. The important difference between a Riesz basis and a
frame is that the null space N (G) of the synthesis map G of a frame {gk} is
in general non-trivial, which is equivalent to the statement that the range
of the analysis map G∗ is a (closed) proper subspace of `2.

The sequence {g̃k} with g̃k = S−1gk, is also a frame with frame bounds
1/B and 1/A. It is a dual frame for {gk} in the sense that

f =
∑

k

〈f, g̃k〉gk =
∑

k

〈f, gk〉g̃k , f ∈ H .

Again, we see that frames do indeed fit our purpose for signal analysis and
signal recovery. In contrast to Riesz bases, frames have, in general, no bi-
orthogonal relation. Moreover, the dual frame is not unique. The canonical
dual {S−1gk} is the one that produces minimal `2 coefficients as already
shown in [11]. It corresponds to the pseudo-inverse of the analysis operator
in finite dimension. For alternative dual frames there exist constructive
approaches that rely on the canonical dual. In [6,32], it is shown that any
dual frame of {gk} can be written as

S−1gk + hk −
∑

j

〈S−1gk, gj〉hj , (16)

where {hk} is a Bessel sequence.
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The lack of uniqueness has the advantage that if one coefficient is missing
out of the sequence 〈f, gk〉, the whole signal can still be completely recovered
as long as {gk} is a frame but no Riesz basis. Similarly, any frame that
is not a Riesz basis is still a frame when discarding single frame elements.
Studies about the conservation of the frame property when discarding frame
elements are known as excesses of frames [1,2].

5. Gabor analysis on L2

We define the Fourier transform of an integrable function by f̂(ω) =∫
Rd f(t)e−2πitωdt. For an element λ = (x, ω) ∈ R2d we define the time-

frequency shift π(λ) by

π(λ) = MωTx

where Tx is the translation operator Txf = f(·−x) and Mω is the modula-
tion operator Mωf = e2πiω·f(·). In analogy to the finite dimensional model,
note that

π(λ2)π(λ1) = e2πi(x1ω2−x2ω1)π(λ1)π(λ2)

for λ1 = (x1, ω1), λ2 = (x2, ω2) ∈ R2d.

A time-frequency lattice Λ is a discrete subgroup of R2d (= Rd × R̂d)
with compact quotient. Its redundancy |Λ| is the reciprocal value of the
measure of a fundamental domain for the quotient R2d/Λ.

For a lattice Λ in R2d and a so-called Gabor atom g ∈ L2 we define the
associated Gabor family by

G(g, Λ) = {π(λ)g}λ∈Λ .

If G(g, Λ) is a frame for L2, we call it a Gabor frame. Since Λ has a group
structure, the frame operator

Sf =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)g

has the property that it commutes with all time-frequency shifts of the form
π(λ) for λ ∈ Λ. Therefore, the canonical dual frame of G(g, Λ) is simply
given by G(h,Λ) with h = S−1g. The fact that a canonical dual frame of a
Gabor frame is again a Gabor frame, i.e., generated by a single function, is
the key property in many applications. It reduces computational issues to
solving the linear system Sh = g.
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A special and widely studied case are separable lattices of the form
αZ × βZ for some positive lattice parameters α and β, whose redundancy
is simply (αβ)−1. The prototype of a function generating Gabor frames for
such separable lattices is the Gaussian

ψ(x) = e−πx2σ2
. (17)

for some real σ > 0. The Gaussian generates a Gabor frame if and only
if αβ < 1 [35,40]. We emphasize that for αβ = 1 the Gaussian generates
an unstable generating system for L2, i.e., the resulting Gabor family is
complete but coefficient sequences must not be bounded. In this context we
mention a central result, the so-called density theorem and refer to [25] for
detailed discussions. An elegant elementary proof of the density theorem
has been provided by Janssen [29].

Theorem 7: Assume that G(g, α, β) is a frame. Then, αβ ≤ 1. Moreover,
G(g, α, β) is a Riesz basis for L2 if and only if αβ = 1.

In his seminal paper [20], Gabor chose the integer lattice α = β = 1 in
R2 and used the Gaussian in order to define a Gabor system with maximal
time-frequency localization. However, as mentioned above, this system is no
longer stable though complete, and, indeed, the celebrated Balian-Low The-
orem [3,34] states that good time-frequency localization and Gabor Riesz
bases are not compatible:

Theorem 8: (Balian-Low) If G(g, 1, 1) constitutes a Riesz basis for L2(R),
then

∫

R
|g(t)|2t2dt

∫

R
|ĝ(ω)|2ω2dω = ∞ .

The Balian-Low Theorem reveals a form of uncertainty principle and has
inspired fundamental research, see [25] and references therein.

In the sequel we state some fundamental results on Gabor frames and
the Gabor frame operator (Gabor frame-type operator). To this end we
need the notion of the adjoint lattice Λ◦ of Λ which is, similarly to the
discrete case, the set of all elements in R2d that satisfy the commutation
property

π(λ◦)π(λ) = π(λ)π(λ◦) for all λ ∈ Λ .
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Note that Λ◦ is again a lattice of R2d (and that Λ◦◦ = Λ). Instead of the
frame operator we will use the more general notion of a frame-type operator
Sg,γ,Λ associated to the pair (g, γ), where γ takes the role of an “analyzing”
and g the role of a “synthesizing” window:

Sg,γ,Λf =
∑

λ∈Λ

〈f, π(λ)γ〉π(λ)g , f ∈ L2 .

This sum converges in L2 for all f ∈ L2 as long as both functions g, γ are
Bessel atoms for Λ, that is, G(g, Λ) and G(γ, Λ) are Gabor Bessel families.
For the fundamental results to hold with respect to norm convergence we
need a little bit more than Bessel sequences, namely, that both atoms g

and γ satisfy
∑

λ◦∈Λ◦
|〈g, gλ◦〉| < ∞ . (A’)

A’ is also known as the Tolimieri-Orr’s condition. This somewhat techni-
cal property is used for controlling convergence problems (by altering the
convergence definition Condition A’ can be weakened). Condition A’ is in
general not easy to verify. In particular, if Condition A’ holds for one lattice,
there is, in general, no guarantee that it holds also for a different lattice.
This problem, however, is overcome by the Feichtinger algebra S0 which de-
fines a class of functions for which Condition A’ is satisfied for any lattice
in R2d. We introduce this algebra in Section 7.

We summarize the fundamental results of Gabor analysis in the fol-
lowing theorem that is given in [18] in a slightly more general context.
The statements go back to the seminal papers [9,28,42]. They, however, are
all consequences of the fundamental identity of Gabor analysis extensively
studied in [16].

Theorem 9: Let Λ be a lattice in R2d with adjoint lattice Λ◦. Then, for
g, h satisfying A’, the following hold.

(1) (Fundamental Identity of Gabor Analysis)
∑

λ∈Λ

〈f, π(λ)γ〉〈π(λ)g, h〉 = |Λ|
∑

λ◦∈Λ◦
〈g, π(λ◦)γ〉 〈π(λ◦)f, h〉 (18)

for all f, h ∈ L2, where both sides converge absolutely.
(2) (Wexler-Raz Identity)

Sg,γ,Λf = |Λ| · Sf,γ,Λ◦g (19)
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for all f ∈ L2.
(3) (Janssen Representation)

Sg,γ,Λ = |Λ|
∑

λ◦∈Λ◦
〈γ, π(λ◦)g〉π(λ◦) (20)

where the series converges unconditionally in the strong operator sense.

In Section 8 we explicitly derive the Janssen representation of the Gabor
frame operator from advanced concepts in harmonic analysis and provide
a much deeper insight into this topic.

Another important result is the Ron-Shen Duality Principle which is
often referred to [38] although it appeared already in [28] and [9] and was
announced in [37].

Theorem 10: Let g ∈ L2 and Λ be a lattice in R2d with adjoint Λ◦.
Then the Gabor system G(g, Λ) is a frame for L2 if and only if G(g, Λ◦)
is a Riesz basis for its closed linear span. In this case, the quotient of
the two frame bounds and quotient of the Riesz bounds (alternatively the
condition number of the corresponding frame operator and the Gramian
matrix, respectively), coincide.

The last important identity in Gabor Analysis that we want to present
in this section is the Wexler-Raz Biorthogonality Relation which basically
says that g and γ are dual Gabor windows if and only if Sg,γ,Λ = Id. That
is, according to Janssen Representation, exactly the case when

〈γ, π(λ◦)g〉 = |Λ|−1 δ0,λ◦ .

Alternatively, this relation can be described by what is a true biorthogo-
nality (using again Kronecker’s Delta):

〈π(λ◦′)γ, π(λ◦)g〉 = |Λ|−1 δλ◦′,λ◦ .

So far we have seen that, similar to the finite dimensional model, the
Gabor frame operator in the continuous case plays a central role in Gabor
theory. Indeed, it is the key object that allows for opening different per-
spectives, and bridges Gabor analysis to other research areas. In the next
section we describe basic and more advanced studies in harmonic analysis
that contribute to a better understanding of the Gabor frame operator.
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6. Time-frequency representations

Traditionally we extract the frequency information of a signal f by means
of the Fourier transform f̂(ω) =

∫
Rd f(t)e−2πitωdt. If we know f̂(ω) for

all frequencies ω, then our signal f can be reconstructed by the inversion
formula f(t) =

∫cRd f̂(ω)e2πitωdω (valid pointwise or in the quadratic mean).

However, in many situations it is of relevance to know, how long each
frequency appears in the signal f , e.g., for a pianist playing a piece of music.
Mathematically this leads to the study of functions S(f)(t, ω) of the signal
f , which describe the time-frequency content of f over “time” t. In the
following we mention the most prominent time-frequency representations.

In the last century researchers such as E. Wigner, Kirkwood, and Ri-
haczek had invented different time-frequency representations, [43,31]. The
work of Wigner and Kirkwood was motivated by the description of a par-
ticle in quantum mechanics by a joint probability distribution of position
and momentum of the particle. More concretely, in 1932 Wigner introduced
the first time-frequency representation of a function f ∈ L2(Rd) by

W (f)(x, ω) =
∫

Rd

f(x +
t

2
)f(x− t

2
)e−2πiωtdt,

the so called Wigner distribution of f . Later Kirkwood proposed another
time-frequency representation, which was in a different context rediscovered
by Rihaczek. Both researchers associated to a function f ∈ L2(Rd) the
following expression

R(f)(x, ω) = f(x)f̂(ω)e−2πixω,

the Kirkwood-Rihaczek distribution of f .

Nowadays, the short-time Fourier transform (STFT) has become the
standard tool for (linear) time-frequency analysis. It is used as a measure
of the time-frequency content of a signal f (energy distribution), but it also
establishes a connection to the Heisenberg group.

The STFT provides information about local (smoothness) properties of
the signal f . This is achieved by localization of f near t through multipli-
cation with some window function g and subsequently applying the Fourier
transform providing information about the frequency content of f in this
segment. Typically g is concentrated around the origin. If g is compactly
supported only a segment of f in some interval or ball around t is relevant,
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but g can be any non-zero Schwartz function such as the Gaussian. Overall
we have:

Vgf(x, ω) =
∫

Rd

f(t)g(t− x)e−2πitωdt, for (x, ω) ∈ R2d. (21)

Before we discuss the properties of the STFT we recall the key play-
ers of our game: translation Tx, modulation Mω, and time-frequency shifts
π(x, ω) = MωTx of a signal f already introduced in Section 5.

In 1927 Weyl pointed out that the translation and modulation operator
satisfy the following commutation relation

TxMω = e−2πixωMωTx, (x, ω) ∈ R2d. (22)

{Tx : x ∈ Rd} and {Mω : ω ∈ Rd} are Abelian groups of unitary operators,
with the infinitesimal generators given by differentiation and multiplica-
tion operator, respectively. Therefore the commutation relation (22) is the
analogue of Heisenberg’s commutation relation for the differentiation and
multiplication operator.

The time-frequency shifts MωTx for (x, ω) ∈ R2d satisfy the following
composition law:

π(x, ω)π(y, η) = e−2πix·ηπ(x + y, ω + η), (23)

for (x, ω), (y, η) in the time-frequency plane Rd × R̂d. i.e. the mapping
(x, ω) 7→ π(x, ω) defines (only) a projective representation of the time-
frequency plane (viewed as an Abelian group) Rd × R̂d. By adding a toral
component, i.e. τ ∈ C with |τ | = 1 one can augment the phase space
Rd × R̂d to the so-called Heisenberg group Rd × R̂d × T and the mapping
(x, ω, τ) 7→ τMωTx defines a (true) unitary representation of the Heisen-
berg group [19], the so-called Schrödinger representation. From this point of
view the definition of Vgf can be interpreted as representation coefficients:

Vgf(x, ω) = 〈f, MωTxg〉, f, g ∈ L2(Rd).

The STFT is linear in f and conjugate linear in g. The choice of the
window function g influences the properties of the STFT remarkably. One
example of a good window class is the Schwartz space of rapidly decreasing
functions. Later we will discuss another function space, which is perfectly
suited as a good class of windows, Feichtinger’s algebra.
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Furthermore, for f, g ∈ L2(Rd) the STFT Vgf is uniformly continuous
on R2d, i.e., we can sample the Vgf without a problem. This fact is of great
relevance in the discussion of Gabor frames.

By Parseval’s theorem and an application of the commutation relations
(22) we derive the following relation

Vgf(x, ω) = e−2πixωVĝ f̂(ω,−x), (24)

which is sometimes called the fundamental identity of time-frequency anal-
ysis [25]. The equation (24) expresses the fact that the STFT is a joint
time-frequency representation and that the Fourier transform amounts to a
rotation of the time-frequency plane Rd×R̂d by an angle of π

2 whenever the
window g is Fourier invariant. Another important consequence of the defi-
nition of STFT (21) and the commutation relations (22) is the covariance
property of the STFT:

Vg(TuMηf)(x, ω) = e−2πiuωVgf(x− u, ω − η). (25)

Later we will draw an important conclusion of the basic identity of time-
frequency analysis (24) and the covariance property of the STFT (25): iso-
metric Fourier invariance and the invariance under TF-shifts of Feichtinger’s
algebra.

As for the Fourier transform there is also a Parseval’s equation for the
STFT which is referred to as Moyal’s formula.

Lemma 11: (Moyal’s Formula) Let f1, f2, g1, g2 ∈ L2(Rd) then Vg1f1 and
Vg2f2 are in L2(R2d) and the following identity holds:

〈Vg1f1, Vg2f2〉L2(R2d) = 〈f1, f2〉 〈g1, g2〉 . (26)

Moyal’s formula implies that orthogonality of windows g1, g2 resp. of signals
f1, f2 implies orthogonality of their STFT’s. Most importantly, we observe
that for normalized g ∈ L2(Rd) (i.e., with ‖g‖2 = 1) one has:

‖Vgf‖L2(R2d) = ‖f‖L2(Rd),

for all f ∈ L2(Rd), i.e., the STFT is an isometry from L2(Rd) to L2(R2d).

Another consequence of Moyal’s formula is an inversion formula for the
STFT. Assume that the analysis window g ∈ L2(Rd) and the synthesis
window γ ∈ L2(Rd) satisfy 〈g, γ〉 6= 0. Then for f ∈ L2(Rd)

f =
1

〈g, γ〉
∫∫

R2d

〈f, π(x, ω)g〉π(x, ω)γ dxdγ. (27)
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We observe that in contrast to the Fourier inversion the building blocks
of the STFT inversion formula are just time-frequency shifts of a square-
integrable function. Therefore also the Riemannian sums corresponding to
this inversion integral are functions in L2(Rd) and are even norm convergent
in L2(Rd) for nice windows (from Feichtinger’s algebra, see later).

Recently the Heisenberg uncertainty principle, which expresses in many
different ways that a function f and its Fourier transform f̂ cannot be both
localized simultaneously, has received much attention. We point the reader
to the work of Gröchenig, Janssen, Hogan, Lakey, and others for results on
uncertainty principles for time-frequency representations.

A first example is the following result of Lieb [33], which is derived from
an application of Beckner’s sharp Hausdorff-Young and Young’s inequalities
to Vgf(x, ω) = ̂(f · Txg)(ω):

Lemma 12: If f, g ∈ L2(Rd) and 1 ≤ p < 2, then
( ∫∫

R2d

|Vgf(x, ω)|pdxdω
)1/p

≥
(2

p

)d/p

‖f‖2‖g‖2 (28)

The inequality is reversed for 2 ≤ p < ∞ .

Results of this kind can be taken as a motivation (although it was not
the original one) for the introduction of function spaces characterized by
summability and decay properties of the STFT of their elements. In 1983
Feichtinger introduced such a family of Banach spaces, the so-called mod-
ulation spaces. They have shown to be the right setup for a deeper un-
derstanding of operators in time-frequency analysis. In the sequel we will
meet two members of the scale of modulation spaces: Feichtinger’s algebra
S0(Rd) and its dual space S′0(Rd). In this setup Lieb’s inequality expresses
just embeddings of certain modulation spaces into L2(Rd). Gröchenig and
some of his collaborators have extensively studied uncertainty principles as
embeddings of certain weighted Lp-spaces into modulation spaces, [24].

7. The Gelfand triple (S0, L2, S′
0)(R

d)

Since Feichtinger’s discovery of the Segal algebra S0(Rd) in 1979, many
results have shown that S0(Rd) is a good substitute for Schwartz’s space
S(Rd) of test functions (except if one is interested in a discussion of par-
tial differential equations). Furthermore, S0(Rd) has turned out to be the
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appropriate setting for the treatment of questions in harmonic analysis on
Rd (actually on a general locally compact Abelian group G, even without
using structure theory). In this section we recall well-known properties of
S0(Rd) which we will need later in our discussion of Gabor frame opera-
tors. Nowadays the space S0(Rd) is called Feichtinger’s algebra since it is a
Banach algebra with respect to pointwise multiplication and convolution.

A function in f ∈ L2 is (by definition) in the subspace S0(Rd) if for
some non-zero g (called the “window”) in the Schwartz space S(Rd)

‖f‖S0 := ‖Vgf‖L1 =
∫∫

Rd×cRd

|Vgf(x, ω)|dxdω < ∞.

The space (S0(Rd), ‖ · ‖S0) is a Banach space, for any fixed, non-zero
g ∈ S0(Rd), and different windows g define the same space and equiva-
lent norms. Since S0(Rd) contains the Schwartz space S(Rd), any Schwartz
function is suitable, but also compactly supported functions having an inte-
grable Fourier transform (such as a trapezoidal or triangular function) are
suitable windows. Often it is convenient to use the Gaussian as a window.

The above definition of S0(Rd) (different from the original one) al-
lows for an easy derivation of the basic properties of Feichtinger’s algebra
in the following lemma. Although they have appeared in various publi-
cations, cf. [25], we include the proofs as examples for the derivation of
norm-estimates, as they are used in many different areas of time-frequency
analysis.

Lemma 13: Let f ∈ S0(Rd), then the following holds:

(1) π(u, η)f ∈ S0(Rd) for (u, η) ∈ Rd × R̂d, and ‖π(u, η)f‖S0 = ‖f‖S0 .
(2) f̂ ∈ S0(Rd), and ‖f̂‖S0 = ‖f‖S0 .

Proof:

(1) For z = (u, η) in the time-frequency plane Rd × R̂d one has:

‖π(u, η)f‖S0 =
∫∫

R2d

|Vgf(x− u, ω − η)| dxdω =

=
∫∫

R2d

|Vgf(x, ω)| dxdω = C‖f‖S0 .
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(2) The key of the argument is an application of the fundamental identity
of time-frequency analysis (24) to a Fourier invariant window g and the
independence of the definition of S0(Rd) from g ∈ S(Rd). For simplicity
we choose g the (Fourier invariant) Gaussian g0(x) = 2d/4e−πx2

:

‖f̂‖S0 =
∫∫

R2d

|Vg0 f̂(x, ω)| dxdω =
∫∫

R2d

|V bg0 f̂(x, ω)| dxdω =

∫∫

R2d

|Vg0f(−ω, x)| dxdω =
∫∫

R2d

|Vg0f(x, ω)| dxdω = ‖f‖S0 .

Later we will need that S0(Rd) is dense and continuously embedded
into Lp(Rd) for any p ∈ [1,∞). The original motivation for Feichtinger’s
introduction of S0(Rd) was the search for a smallest member in the family
of all time-frequency homogenous Banach spaces. For a proof of all these
assertions we refer the reader to the original paper of Feichtinger [F81] or
Gröchenig’s book on time-frequency analysis [25].

Another reason for the usefulness of S0(Rd) is the fact that S0(Rd) is a
natural domain for the application of Poisson summation formula [24].

Lemma 14: Let Λ be a lattice in Rd and f ∈ S0(Rd) then
∑

λ∈Λ

f(λ) = |Λ|−1
∑

λ⊥∈Λ⊥

f̂(λ⊥) (29)

holds pointwise and with absolute convergence.

Here Λ⊥ is the orthogonal lattice for Λ, e.g. Λ⊥ = (A−1)tZd for Λ = AZd,
where A is a non-singular matrix describing Λ.

In 1958 I. M. Gelfand and A G. Kostyuchenko introduced Gelfand triples
in their study of the spectral theory of self-adjoint operators [21]. They were
motivated by the work of Dirac on the foundations of quantum mechanics
and Schwartz’s theory of distributions.

An important result of linear algebra is the theorem on the existence
of eigenvectors for any self-adjoint linear operator A on Rd. The situa-
tion changes drastically when one passes from the finite to the infinite-
dimensional case, since it can happen that a unitary operators does not
have any (non-zero) eigenvector. Particular examples of such operators are
the translation operator Tx and the modulation operator Mω on L2(Rd).
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Let us present an easy argument showing that the translation operator
Tx, x 6= 0, has no eigenvectors in L2(Rd). Assume that f ∈ L2(Rd) satisfies

Txf(t) = af(t), (30)

which by, the Fourier transform, is equivalent to

M−xf̂(ω) = af̂(ω) a.e.. (31)

But this is only possible if the function f̂ equals zero a.e., up to the points
with e2πiωx 6= a, i.e., it differs from zero only on a set of measure zero, hence
f̂ = 0, and finally f = 0 ∈ L2(Rd). In other words, the translation operator
Tx does not have eigenvectors in the space L2(Rd). On the other hand,
we are not too far off with the claim that Tx has the eigenvectors e−2πitω

corresponding to the eigenvalue e2πixω, and the claim that any function f

in L2(Rd) can be (kind of) expanded in terms of the eigenvectors e−2πitω,
by suitable interpretation of the inversion formula for the Fourier transform
(valid pointwise for f ∈ S0(Rd)):

f(t) =
∫

Rd

f̂(ω)e2πitωdω. (32)

Furthermore, the action of the translation operator is given by

Txf(t) =
∫

Rd

e2πixω f̂(ω)e2πitωdω,

which is a continuous analog of the spectral decomposition of a self-adjoint
operator in Rd.

More concretely, the system of eigenfunctions {e−2πitω : ω ∈ R̂d} is
complete in the sense that for any function f in L2(Rd) Parseval’s equality
holds ∫

Rd

|f(t)|2dt =
∫

Rd

|f̂(ω)|2dω.

The obvious problem is the fact that L2(Rd) does not contain the system
of eigenvectors of the translation operator Tx. But they can be considered
as linear functionals on S0(Rd). This as well es several similar observations
suggests to study operators on a Hilbert space via a dense subspace and its
associated dual space. In our example it is actually possible to start from
S0(Rd) and construct L2(Rd) as completion of S0(Rd) with respect to norm
corresponding to the usual scalar product 〈f, g〉 =

∫
Rd f(t)g(t)dt.

In this context it turns out that S0(Rd) has the important addi-
tional property that both δ-distributions and the pure frequencies χω(x) =
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e−2πixω (for all ω ∈ Rd) are in a natural way elements of S′0(Rd), i.e. define
bounded linear functionals on S0(Rd). As a consequence we are now in a
situation similar to the one inspiring Gelfand to introduce what is nowadays
called a Gelfand triple. The main idea is the observation, that a triple of
spaces – consisting of the Hilbert space itself, a small (topological vector)
space contained in the Hilbert space, and its dual – allows a much better
description of the situation. The advantage in our case is the fact that we
can even consider a Banach space, namely S0(Rd). Hence we can work with
the following formal definition:

Definition 15: A (Banach) Gelfand triple consists of some Banach space
(B, ‖.‖B), which is continuously and densely embedded into some Hilbert
space H, which in turn is w∗-continuously and densely embedded into the
dual Banach space (B′, ‖.‖′).

We shall use the symbol (B,H, B′) for such a triple of spaces. In this setting
the inner product on H extends in a natural way to a pairing between B

and B′ (producing an anti-linear functional of the same norm).

As another consequence we mention an extension of an eigenvector of
a bounded operator on a Hilbert space H. Let A be a linear operator on a
Banach space B. Then a linear functional F is a generalized eigenvector of
A to the eigenvalue λ if

F (Af) = λF (f), for all f ∈ B.

This notion allows to interpret the characters χω(x) = e−2πiωx as general-
ized eigenvectors for the translation operator Tx on S0(Rd). Furthermore
the set of generalized eigenvectors {χω : ω ∈ Rd} is complete by Plancherel’s
theorem, i.e., f̂(ω) = 〈χω, f〉 = 0 for all ω ∈ Rd, this implies f ≡ 0. This
suggests to think of the Fourier transform of f at frequency ω as the eval-
uation of the linear functional 〈χω, f〉.

The treatment of the translation operator Tx on L2(Rd) is a particular
case of a general theorem by Gelfand, that for any self-adjoint operator A

on a Hilbert space H there exists a nuclear space and a complete system of
generalized eigenvectors, see [22]. The advantage of the approach presented
here is that instead of a (maybe complicated) nuclear topological vector
space, a relatively simple-minded Banach space can be used.

The introduction of Gelfand triples does not only offer a better descrip-
tion of a self-adjoint operator but it allows also simplification of proofs. For
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example, in the discussion of the Fourier transform F , the latter is consid-
ered as an object on S0(Rd) where everything is well-defined, and Parseval’s
formula and taking the inverse Fourier transform are justified by the nice
properties of S0(Rd). By a density argument we get all properties of the
Fourier transform on the level of L2(Rd). And we obtain an extension of the
Fourier transform to S′0(Rd), the so-called generalized Fourier transform,
by duality.

The preceding discussion suggests the following lemma which says that
assertions for an operator on the S0-level are actually statements for L2(Rd)
and S′0, respectively.

Lemma 16: The Fourier transform F on Rd has the following properties:

(1) F is an isomorphism from S0(Rd) to S0(R̂d),
(2) F is a unitary map between L2(Rd) and L2(R̂d),
(3) F is a weak∗ (as well as a norm-to-norm) continuous bijection from

S′0(Rd) to S′0(R̂d).

Furthermore we have that Parseval’s formula

〈f, g〉 = 〈f̂ , ĝ〉 (33)

is valid for (f, g) ∈ S0(Rd) × S′0(Rd), and therefore on each level of the
Gelfand triple (S0, L

2, S′0)(Rd).

The properties of Fourier transform are expressed by the Gelfand bracket

〈f, g〉(S0,L2,S′0)(Rd) = 〈f̂ , ĝ〉(S0,L2,S′0)(bRd) (34)

which combines the functional brackets of Banach spaces and of the inner-
product for the Hilbert space.

The Fourier transform is a prototype for the notion of a Gelfand triple
isomorphism.

Definition 17: If (B1,H1, B
′
1) and (B2,H2, B

′
2) are Gelfand triples then

an operator A is called a [unitary] Gelfand triple isomorphism if

(1) A is an isomorphism between B1 and B2.
(2) A is a [unitary operator resp.] isomorphism from H1 to H2.
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(3) A extends to a weak∗ isomorphism as well as a norm-to-norm continu-
ous isomorphism between B′

1 and B′
2.

In this terminology the Fourier transform is a unitary Gelfand
triple isomorphism (actually an automorphism) on the Gelfand triple
(S0, L

2, S′0)(Rd). In the following lemma we give conditions for the exten-
sion of a linear mapping given on S0(Rd) to a unitary mapping on L2(Rd).

Lemma 18: (cf. [18]) Let U be a unitary mapping from L2(Rd) to
L2(Rd). The mapping U extends to a Gelfand triple isomorphism between
(S0, L

2, S′0)(Rd) and (S0, L
2, S′0)(Rd) if and only if the restriction of U to

S0(Rd) defines a bounded bijective linear mapping from S0(Rd) onto itself.

Due to this lemma we only have to check the properties of U at the S0-level,
i.e., to verify the existence of some C > 0 such that

‖Uf‖S0(Rd) ≤ C‖f‖S0(Rd). (35)

The discussion of the Fourier transform F on the Gelfand triple
(S0, L

2, S′0)(Rd) allows to think of F as a bounded operator between S0(Rd)
and S′0(Rd) with a distributional kernel k(t, ω) = e−2πitω. The existence of a
distributional kernel for any bounded operator between S0(Rd) and S′0(Rd)
is kernel theorem for S0(Rd) (cf. [15], Thm. 7.4.2). Before we give a precise
description of this important fact, we recall the notion of a Wilson basis.
With the help of a Wilson basis we can adapt a linear algebra reasoning to
the infinite-dimensional setting.

In 1991 Daubechies, Jaffard, and Journé [8] followed an idea of Wilson in
their construction of an orthonormal basis from a Gabor system G(g, Λ) of
L2(Rd). Wilson suggested that the building blocks π(x, ω)g of an orthonor-
mal basis of L2(Rd) should be symmetric in ω and should be concentrated
at ω and −ω.

Definition 19: For g ∈ L2 the associated Wilson system W(g) consists of
the functions

ψk,n = cnT k
2
(Mn + (−1)k+nM−n)g, (k, n) ∈ Z× N0,

where c0 = 1
2 and cn = 1√

2
for n ≥ 1, ψk,0 = Tkg and ψ2k+1,0 = 0 for k ∈ Z.
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They proved the following theorem which shows a method for the con-
struction of a Wilson basis from a Gabor system G(g, 1

2Z × Z). Later Fe-
ichtinger, Gröchenig, and Walnut [13] showed that Wilson systems pro-
vide an unconditional basis for S0(Rd) and S′0(Rd) endowed with the w∗-
topology (actually, for all modulation spaces Mp,q

m (Rd) with p, q < ∞).
Therefore Wilson systems provide us with a natural class of bases for time-
frequency analysis. The existence of an unconditional basis for S0(Rd) will
be very helpful in our discussion of the kernel theorem for S0(Rd) and its
construction relies heavily on the functorial properties of S0, cf. [15].

Theorem 20: Let G(g, 1
2Z × Z) be a tight frame for L2(R) with ‖g‖ = 1

and g(x) = g(−x). Then the Wilson system W(g) is an orthonormal basis
of L2(R).

As a corollary we get Wilson bases for L2(Rd) by taking tensor products.

Corollary 21: Let W(g) be a Wilson basis for L2(R) and define Ψk,n =∏d
j=1 ψrj ,sj for (r, s) ∈ Zd × Nd

0. Then Ψk,n is an orthonormal basis for
L2(Rd).

In applications of mathematics one often has to deal with linear systems.
In the discrete and finite case each linear system is a linear mapping from
the input space Rn into the output space Rm of our system and its action
is given by matrix multiplication after a choice of bases in Rn and Rm,
respectively (similarly from Cn to Cm using complex matrices).

A linear system in infinite dimensions may be considered as a continuous
analog of matrix multiplication (replacing summation by integration), i.e.,

g(x) = Kf(x) =
∫

Rd

k(x, y)f(y)dy.

We can think of the input values f(y) as being listed in an infinite column
vector and k(x, y) as an infinite matrix, the so-called kernel of K, and
the integral

∫
Rd k(x, y)f(y)dy providing the entries of the output vector in

the expected way. In signal processing, such a model is known as a linear
time-variant system.

For a wide range of function spaces (covering practically all cases rel-
evant for applications) and by means of the use of generalized functions,
this analogy can be given a precise mathematical meaning. The natural
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way of describing this context is via so-called kernel theorems. Although
only Hilbert Schmidt operators can be described as integral operators with
L2-kernels, every bounded linear system A on L2(Rd) can be uniquely de-
scribed by some distributional kernel K ∈ S′0(R2d).

The notion of Gelfand triples suggests to consider bounded linear op-
erators between arbitrary Lp and Lq-spaces (with p < ∞) as bounded
operators from S0(Rd) to S′0(Rd) (by trivial restriction of the range). Since
Kf is only a distribution, we can describe it only indirectly by applying
the output distribution to some test function g ∈ S0(Rd).

Suppose we have an integral operator K with distributional kernel k on
S0(Rd), i.e., we think of K in a weak sense

〈Kf, g〉 = 〈k, g ⊗ f〉, f, g ∈ S0(Rd),

where (g ⊗ f)(x, y) denotes the tensor product g(x)f(y), then K is a
bounded operator between S0(Rd) and S′0(Rd). Since by duality we deduce
that

|〈Kf, g〉| = |〈k, f ⊗ g〉| ≤ ‖k‖S′0‖f ⊗ g‖S0 = ‖k‖S′0‖f‖S0‖g‖S0

is true for all g ∈ S0(Rd), we have that Kf ∈ S′0(Rd). Therefore the operator
K is bounded between S0(Rd) and S′0(Rd) with the following estimate for
the operator norm of K:

‖K‖op ≤ ‖k‖S′0 .

The non-trivial aspect of the kernel theorem is that the converse is true.

Theorem 22: If K is a bounded operator from S0(Rd) to S′0(Rd), then
there exists a unique kernel k ∈ S′0(R2d) such that 〈Kf, g〉 = 〈k, g ⊗ f〉 for
f, g ∈ S0(Rd).

We only sketch a proof and refer the interested reader to the book of
Gröchenig [25] for the technical details.

We define the infinite matrix a =
(
a(l,m),(r,s)

)
of the operator K with

respect to a multivariate Wilson basis W(g) by

a(l,m),(r,s) = 〈KΨr,s,Ψl,m〉. (36)
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Then the matrix a is bounded from `1(Zd×Nd
0) to `∞(Zd×Nd

0). Therefore,
we can define a kernel k for K as in linear algebra, by

k =
∑

l,m,r,s

a(l,m),(r,s)Ψl,m ⊗Ψr,s. (37)

Now, we know that {Ψl,m ⊗ Ψr,s} is an orthonormal basis for L2(R2d)
which yields that k ∈ S′0(R2d) with weak∗-convergence of the sum.

An important corollary of the preceding discussion is the following ob-
servation.

Corollary 23: Let (Ψk,n) be an orthonormal Wilson basis for L2(Rd).
Then the coefficient mapping D : f 7→ 〈f,Ψk,n〉 induces a Gelfand triple
isomorphism between (S0, L

2, S′0)(Rd) and (`1, `2, `∞)(Zd × Nd).

Proof: Since (Ψk,n) is an orthonormal basis of L2(Rd) the analysis opera-
tor f 7→ 〈f,Ψk,n〉 is an isomorphism between L2(Rd) and `2(Zd×Nd). The
Wilson system (Ψk,n) is an unconditional basis for S0(Rd) and therefore the
analysis operator gives an isomorphism between S0(Rd) and `1(Zd × Nd).
By duality we obtain that S′0(Rd) is isomorphic to `∞(Zd × Nd).

8. The spreading function

The notion of a Gelfand triple has turned out to be a very fruitful concept
for investigations in Gabor analysis, see [15], [7], [10]. In this section we
present some results of Feichtinger and Kozek on Gelfand triples for time-
frequency analysis. All these results have their origin in the search of a
mathematical framework for problems in signal analysis. Many problems
in applications are modelled as linear time-variant systems (LTV). In the
last section we learned that a LTV is just an integral operator K acting on
signals with finite energy,

Kf(x) =
∫

Rd

k(x, y)f(y)dy, f ∈ L2(Rd). (38)

The quality of an integral operator K on L2(Rd) relies on properties of its
kernel k. For example, integrability conditions on k yield classes of nice oper-
ators. The most prominent class of operators, the Hilbert-Schmidt operators
HS, are defined in terms of integrability conditions. Namely, an integral op-
erator K on L2(Rd) is a Hilbert-Schmidt operator if k ∈ L2(Rd×Rd). From
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the analogy between integral operators and matrices we see that Hilbert-
Schmidt operators are a generalization of the space of linear mappings on a
finite dimensional vector space V with respect to the Frobenius norm, see
(10) in Section 2.

The class of Hilbert-Schmidt operators HS has a natural inner product.
Let K1,K2 ∈ HS with kernels k1, k2, respectively. Then

〈K1,K2〉HS := 〈k1, k2〉L2(Rd×Rd) (39)

defines an inner product on HS. The associated Hilbert-Schmidt norm
‖K‖HS :=

(〈K, K〉HS

)1/2 gives HS the structure of a Hilbert space [39].
Furthermore we recall that every Hilbert-Schmidt operator in HS is a com-
pact operator on L2(Rd). Recall that a compact operator K on L2(Rd) is
of Hilbert-Schmidt type if and only if there exists an orthonormal basis
(en)n∈N in L2(Rd) and a sequence of scalars (λn)n∈N ∈ `2(N) such that

Kf =
∑

n∈N
λn〈en, f〉en. (40)

The sequence of scalars (λn)n∈N are actually the eigenvalues of K and
‖K‖HS =

(∑
n∈N |λn|2

)1/2. The space of Hilbert-Schmidt operators HS

is not closed in the C∗-algebra K of compact operators on L2(Rd) with
respect to the operator norm, and there exist compact operators which are
not of Hilbert-Schmidt type. But HS is a two-sided ideal in K.

If we choose as orthonormal basis of L2(Rd) a Wilson basis (Ψk,n),
then the preceding observations lead to an isomorphism between HS and
`2(Zd × Nd). Now we can make use of the concept of Gelfand triples,
but this time we take the Hilbert-Schmidt operators as Hilbert space
of an Operator Gelfand triple. We observe that the kernel theorem for
S0(Rd) provides us with another class of operators with ”smooth ker-
nels”. We write L for the space of bounded linear operators on a Ba-
nach space B. One finds that K ∈ L(S′0(Rd), S0(Rd)) can be identi-
fied with kernels k ∈ S′0(R2d) which is dense in HS. But the class of
Hilbert-Schmidt operators HS is dense in L(S0(Rd), S′0(Rd)) and there-
fore (L(S′0(Rd), S0(Rd)),HS,L(S0(Rd), S′0(Rd))) is indeed a Gelfand triple.
In this setting the kernel theorem can be interpreted as a unitary Gelfand
triple isomorphism between this triple of operators and their kernels in
(S0, L

2, S′0)(Rd×Rd). There is another Gelfand triple isomorphism that as-
sociates theHS Gelfand triple with the Gelfand triple (S0, L

2, S′0)(Rd×R̂d):
the so-called spreading symbol of operators.
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As a motivation we discuss a problem of great practical interest: com-
munication with cellular phones. In modern communication cellular phones
play a crucial rule in everyday life. How do engineers solve the problem of
transmitting a signal f from a sender A to a receiver B? In the most general
situation, sender A and receiver B move in different directions with certain
velocities, which leads to a variation of the path lengths of the transmitted
signal f and, due to the Doppler effect, to a change of frequencies. Therefore
B receives a signal of the following form

f̃ =
∫∫

R2
η(K)(x, ω)MωTxfdxdω, (41)

where the function η(K) models the effect of the channel by the amount of
time-frequency shifts arising as just described, applied to the signal f .

The receiver B is not interested in the signal f̃ but in the original signal
f . From a mathematical point of view, f̃ is just the action of an operator K

on the signal f , i.e., f̃ = Kf . In this picture B has to invert the operator K

to get the information contained in the signal f . Operators of this form are
called pseudo-differential operators and arise naturally in many problems of
physics, engineering and mathematics. The function η(K) is the so-called
spreading function of the operator K. In the following, we look for conditions
on the spreading function η(K) which allow an inversion of our pseudo-
differential operator K.

First the equation (41) suggests a decomposition of a general operator
K on L2(Rd) as a continuous superposition of time-frequency shifts.

K =
∫∫

R2d

η(K)(x, ω)MωTxdxdω. (42)

We already know such a decomposition of the identity operator on L2(Rd)
since this is the inversion formula for the STFT:

IL2(Rd) =
1

〈g, γ〉
∫∫

R2d

Vgf(x, ω)MωTxdxdω (43)

for g, γ ∈ L2(Rd) with 〈g, γ〉 6= 0.

The non-commutativity of translation and modulation operators on
L2(Rd) leads to a twisted convolution of the spreading functions of two
operators K and L. Let K, L ∈ L(S0, S

′
0) and η(K), η(L) their spreading

functions. Then the spreading function of the composition KL is given by
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twisted convolution of η(K) and η(L):

η(KL)(x, ω) =
∫∫

R2
η(K)(x′, ω′)η(L)(x−x′, ω−ω′)e−2πix′(ω−ω′)dω′. (44)

The spreading function of the adjoint operator K∗ is given by

η(K∗)(x, ω) = η(K)(−x,−ω) · e−2πixω (45)

and therefore leads to a noncommutative involution. Later we will return to
this topic in the context of Gröchenig/Leinert’s resolution of the ”irrational
case”-conjecture [26].

The relation between the kernel k of an operator K from the Gelfand
triple (L(S0, S

′
0),HS,L(S′0, S0)) and its spreading function η(K) is given

by

η(K)(x, ω) =
∫

Rd

k(y, y − x)e−2πiyωdy, (46)

which is very useful in the calculation of the spreading function of an op-
erator K. It can be interpreted literally at the lowest level (integrals etc.
exist), and extends by continuity to the “upper levels”. Moreover, it can
be described by the fact that it is the unique Gelfand triple isomorphism
which maps TF-shift operators onto the corresponding Dirac measures in
the TF-plane (hence reproducing exactly the situation we had in the finite
case).

The spreading function of an operator K is an object living on the time-
frequency plane Rd×R̂d. Therefore a further understanding of its properties
is necessary according to the structure of Rd×R̂d which is closely related to
the structure of the Euclidean plane Rd × Rd. Namely, the time-frequency
plane is a symplectic manifold, i.e., there exists a non-degenerate 2-form
Ω(X, Y ) = y · ω − x · η for two points X = (x, ω), Y = (y, η) in Rd × R̂d.
Since Ω is non-degenerate there is a unique invertible skew-symmetric linear
operator J on Rd × R̂d such that the symplectic form Ω and the Euclidian
inner product are related as follows: Ω(X, Y ) = 〈JX,Y 〉 for all X, Y ∈
Rd × R̂d. This implies an important fact about the characters of Rd × R̂d.
Namely, the characters are given by {χs(X,Y ) = e2πiΩ(X,Y )|X ∈ Rd × R̂d}
for a fixed Y ∈ Rd × R̂d. Therefore it is natural to analyse a function F on
Rd × R̂d with the symplectic Fourier Transform

FsF (X) =
∫∫

Rd×bRd

F (Y )e2πiΩ(X,Y )dY (47)
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instead of the Fourier transform F induced by the standard inner-product
〈·, ·〉 on Rd × Rd. From the relation between symplectic form and inner-
product we obtain that the symplectic Fourier transform Fs is just a Fourier
transform followed by a rotation by π

2 since J describes a rotation by π
2

around the origin of Rd×Rd. This fact allows us to derive similiar statements
for the symplectic Fourier transform as for the Euclidian Fourier transform.

(1) Fs is a unitary mapping from L2(Rd × R̂d) onto L2(Rd × R̂d).
(2) F−1

s = Fs (involutive property);
(3) Fs

(
S0(Rd × R̂d)

)
= S0(Rd × R̂d).

By duality we obtain that

Proposition 24: The symplectic Fourier transform Fs defines a unitary
Gelfand triple automorphism on (S0, L

2, S′0)(Rd × R̂d).

Another reason for our choice of S0(R2d) as space of test functions is that
the Poisson summation formula for symplectic Fourier transform holds
pointwise and with absolute convergence. Recently, we have shown that the
Fundamental Identity of Gabor Analysis can be dervied by an application
of Poisson summation to a product of two STFT’s:

Theorem 25: Let Λ a lattice in Rd × R̂d with adjoint lattice Λ◦ and
F ∈ S0(R2d). Then

∑

λ∈Λ

F (λ) =
1
|Λ|

∑

λ◦∈Λ◦
FsF (λ◦) (48)

holds pointwise and with absolute convergence on both sides.

The spreading function is an important tool for the description of
(slowly) time-variant channels in communication theory, but it is not the
only symbol associated with a linear operator. In the theory of pseudo-
differential operators the Kohn-Nirenberg symbol (KN), denoted by σ(K),
is used for an operator K ∈ (S0, L

2, S′0)(Rd). It is defined as the symplectic
Fourier transform of the spreading function η(K):

σ(x, ω) = Fsη(K) =
∫∫

Rd×bRd

η(K)e2πi(y·ω−x·η)dydη, (x, ω) ∈ Rd × R̂d.

(49)
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If Kf(x) =
∫
Rd k(x, y)f(y)dy then σ(K) =

∫
Rd k(x, x − y)e−2πiy·ωdy.

In signal analysis σ(K) was introduced by Zadeh and is called the time-
varying transfer function of a system modelled by K. As an example we
mention the KN symbol of a rank-one operator f ⊗ g, which describes the
mapping h 7→ 〈h, g〉f , is equal to

σ(f ⊗ g)(x, ω) = f(x)ĝ(ω)e−2πix·ω , (x, ω) ∈ Rd × R̂d, (50)

the Rihaczek distribution of f against g. For f, g ∈ S0(Rd) we have that the
KN-symbol σ(f ⊗ g) is in S0(Rd× R̂d) which in turn implies (using the last
equation) that (x, ω) 7→ e2πix·ω is a pointwise multiplier on S0(Rd × R̂d).

After these preparations we can state one of our main results:

Theorem 26: The spreading function K 7→ η(K) is a unitary Gelfand
triple isomorphism from (L(S0, S

′
0),HS,L(S′0, S0)) to (S0, L

2, S′0)(Rd×R̂d).

Corollary 27: The KN symbol of K induces a unitary Gelfand triple iso-
morphism between (L(S0, S

′
0),HS,L(S′0, S0)) and (S0, L

2, S′0)(Rd × R̂d).

Another consequence of the preceding theorem are the following
Gelfand-bracket identities for K1,K2 ∈ (L(S0, S

′
0),HS,L(S′0, S0)):

〈K1,K2〉(B,HS,B′) = 〈η(k1), η(k2)〉(S0,L2,S′0)(Rd×bRd) (51)

= 〈σ(k1), σ(k2)〉(S0,L2,S′0)(Rd×bRd), (52)

with B = L(S0, S
′
0) and B′ = L(S′0, S0) respectively.

The KN symbol of a rank-one operator f⊗g, is the Rihaczek distribution
and by an application of the (inverse) symplectic Fourier transform we get
another time-frequency distribution: the STFT!

Lemma 28: For f, g ∈ S0(Rd) the rank-one operator f ⊗ g has a kernel in
S0(Rd). Moreover the corresponding spreading function is

η(f ⊗ g)(x, ω) =
∫

Rd

f(x)g(y − x)e−2πiy·ωdy (53)

and hence coincides with Vgf ∈ S0(Rd × R̂d).

In the light of this result the inversion formula for the STFT is a superpo-
sition of time-frequency shifts with the spreading function of the rank-one
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operator g ⊗ γ for g, γ ∈ L2(Rd) with 〈g, γ〉 6= 0:

f =
1

〈g, γ〉
∫∫

Rd×bRd

η(f ⊗ g)(x, ω)TxMωγ dxdω. (54)

Recall that in analogy with the characters {χω : ω ∈ R̂d}, the time-
frequency shifts {π(X) : X = (x, ω) ∈ Rd × R̂d} would be an orthonor-
mal set with respect to the Hilbert-Schmidt inner product 〈·, ·〉HS and
η(f ⊗ g)(x, ω) = 〈f ⊗ g, π(x, ω)〉HS but as in the case of Fourier trans-
form, the building blocks π(X) for X ∈ Rd× R̂d of our orthonormal system
{π(X) : X = (x, ω) ∈ Rd × R̂d} are not Hilbert- Schmidt. As in our treat-
ment of the Fourier transform, it is not so important that the building blocks
are elements of our Hilbert space but that they allow us to get expressions
as it were an orthonormal set of elements in our Hilbert space.

As a first example we state a generalization of the inversion formula for
the STFT from L2(Rd) to the Gelfand triple (S0, L

2, S′0)(Rd), where for
f ∈ S′0(Rd) the formula is interpreted in a weak sense.

Proposition 29: Let g, γ ∈ S0(Rd) with 〈g, γ〉 6= 0. Then

f =
1

〈g, γ〉
∫∫

Rd×bRd

η(f ⊗ g)(x, ω)TxMωγ dxdω. (55)

holds for f ∈ (S0, L
2, S′0)(Rd).

That is a special case of a general statement about the spreading function.

Theorem 30: Any K ∈ (L(S0, S
′
0),HS,L(S′0, S0)) has a representation

K =
∫∫

Rd×bRd

〈K, π(x, ω)〉L(S0,S′0) π(x, ω) dxdω (56)

convergent in the strong resp. weak∗-sense. The (complex-valued) ampli-
tude function arising in this context, i.e. η(K)(x, ω) = 〈K, π(x, ω)〉L(S0,S′0),
is called the spreading distribution of the operator K.

The basic tool in the proof is the fact that the spreading representation
maps a time-frequency shift π(X), for X = (x, ω) ∈ Rd × R̂d, on the Dirac
measure δX , i.e., η(π(X)) = δX , and the relation between the spreading
function and the kernel of an operator K.
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The preceding theorem is the mathematical justification of a widely
used statement that the spreading function of an operator K is a measure
for the time-frequency content of K.

In our intuition we move an operator K over Rd × R̂d and expect a
simple relation between the original symbol of K and the symbol after a
movement to (x, ω) ∈ Rd× R̂d. The KN-symbol of an operator K is shifted
by Tx,ω in the time-frequency plane.

Lemma 31: Let K belong to one of the spaces (L(S′0, S0),HS,L(S′0, S0)),
then π(x, ω)Kπ(x, ω)∗, the conjugation of K by π(x, ω), (x, omega) ∈ Rd×
R̂d, corresponds to translation of the KN symbol σ(K),

σ(π(x, ω)Kπ(x, ω)∗) = T(x,ω)

(
σ(K)

)
. (57)

This property of the KN symbol is of central importance in our study of
the Gabor frame operator to which we devote the final part of this section.
Let G = (g, Λ) be a Gabor system for a lattice Λ ∈ Rd × R̂d. Then the
Gabor frame operator Sg,Λ commutes with all time-frequency shifts of the
lattice Λ, i.e.

π(λ)Sg,Λπ(λ)∗ = Sg,Λ, for all λ ∈ Λ. (58)

This fact was the motivation for Feichtinger and Kozek to introduce the
class of Λ-invariant operators [15].

Definition 32: Let Λ be a lattice in Rd × R̂d and K an operator in B(Λ).
Then K is called Λ-invariant if π(λ)K = Kπ(λ) for all λ ∈ Λ.

In the following we want to find the support of the spreading function
η(K) of an Λ-invariant operator K ∈ (L(S0, S

′
0),HS,L(S′0, S0)). As a first

step towards this result we study spreading representations of K on Rd×R̂d.

Lemma 33: Let K1,K2 ∈ L(S0, S
′
0) with spreading function η(K1), η(K2),

respectively. Then

(1) η(K1K2)(λ) =
∫∫
Rd×bRd η(K1)(µ)η(K2)(λ − µ)ρ(λ − µ, µ)dµ with

ρ(X,Y ) = e2πi(y·ω−x·η) for X = (x, ω), Y = (y, η) ∈ Rd × R̂d.
(2) supp(η(K1)η(K2)) ⊂ supp(K1) + supp(K2).
(3) |η(K1K2)| = |η(K1)| ∗ |η(K2)| for η(K1), η(K2) ∈ L1

loc(Rd × R̂d).
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The proof of (i) is a consequence of the commutation relation for time-
frequency shifts and the fact that for K1 ∈ L(S0, S

′
0) and K2 ∈ L(S0, S

′
0)

also K1K2 ∈ L(S′0, S0). Now each operator K in L(S0, S
′
0) has an abso-

lutely convergent spreading representation and therefore our result holds
pointwise. The support condition follows from the analogous result for the
ordinary convolution.

By abstract reasons, each Λ-invariant operator K has a representation
in the set of all operators concentrated on Λ◦ = {λ◦ ∈ Rd×R̂d|π(λ)π(λ◦) =
π(λ◦)π(λ)} since K lies in the commutant of the (C∗, von Neumann) al-
gebra generated by {π(λ) : λ ∈ Λ}. The set Λ◦ is the so-called adjoint
lattice, since it is the annihilator subgroup of Λ for the symplectic Fourier
transform Fs, and if Λ⊥ is the annihilator subgroup of Λ with respect to
F , then Λ◦ = JΛ⊥.

The time-frequency invariance of S0(Rd) implies that K and π(λ)K
are in the Gelfand triple (L(S0, S

′
0),HS,L(S′0, S0)), too. Therefore, the Λ-

invariance of T translates into a periodicity condition for the symbol σ(K)

σ(K) = Tλ(σ(K)), λ ∈ Λ . (59)

This periodicity condition corresponds to a support condition for the
spreading function since But {e−2πΩ(λ,µ)|λ ∈ Λ} for a fixed µ ∈ Rd × R̂d is
a group of characters on Rd × R̂d yields that

supp(η(K)) ⊂ JΛ⊥ = Λ◦. (60)

The fact that distributions in S′0(Rd) with support in a discrete subgroup
is a sum of Dirac measures with a bounded sequence of coefficients implies,
that for some bounded sequence (cλ◦) over Λ◦

η(K) =
∑

λ◦∈Λ◦
cλ◦δλ◦ (61)

with cλ◦ = (K)λ◦ =
∫∫
Rd×bRd/Λ◦ σ(K)(µ)e2πiΩ(λ,µ)dµ.

Returning to the description in the operator domain we arrive at the
following characterization

Theorem 34: Let K ∈ (L(S0, S
′
0),HS,L(S′0, S0)) and σ(K) the KN sym-

bol. Then σ(K) is a Λ-periodic distribution with a symplectic Fourier trans-
form supported on Λ◦. Furthermore

K =
∑

λ◦∈Λ◦
(K)λ◦π(λ◦). (62)
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Corollary 35: The mapping σ(K) 7→ (K)λ◦ is a unitary Gelfand triple
isomorphism between (S0, L

2, S′0)(Rd × R̂d/Λ) and (`1, `2, `∞)(Λ◦).

Note that the time-frequency invariance of S0(Rd) implies the bound-
edness of K on S0(Rd) since

‖K‖L(S0) = ‖
∑

λ◦∈Λ◦
(K)λ◦π(λ◦)‖L(S0) ≤

∑

λ◦∈Λ◦
|(K)λ◦ |. (63)

The next theorem shows that for any Λ-invariant operator K with
σ(K) ∈ S′0((Rd × R̂d)/Λ) there exists a prototype operator P ∈ L(S0, S

′
0)

such that periodization of P in the time-frequency plane corresponds to
sampling of the spreading function η(P ) on Λ◦.

Theorem 36: Let K be a Λ-invariant operator with σ(K) ∈ S′0((Rd ×
R̂d)/Λ). Then there exists some P ∈ L(S0, S

′
0) such that its periodization

is exactly K

K =
∑

λ∈Λ

π(λ)P π(λ)∗ =
1
|Λ|

∑

λ◦∈Λ◦
〈P, π(λ◦)〉L(S0,S′0) π(λ◦). (64)

Remark 37: The preceding result is a discrete analog of our spreading
representation for operators in L(S0, S

′
0) which, in the context of Gabor

analysis, leads to the so-called Janssen representation of the Gabor frame
operator.

The proof of the theorem is based on two important features of the time-
frequency plane Rd × R̂d.

(1) {U 7→ π(λ)U π(λ)∗|λ ∈ Λ} defines a unitary representation of Λ which
gives the Λ-invariance of K.

(2) An application of the Poisson summation formula for the symplectic
Fourier transform to σ(P ) with respect to the lattice Λ maps the peri-
odization of

σ(K) =
∑

λ∈Λ

Tλ(σ(P )) (65)

to the sampling of the spreading function η(P ) on the lattice Λ◦.

As an application we state that the Gabor frame operator Sg,Λ of a Gabor
system G(g, Λ) with g ∈ S0(Rd) is generated by shifting a rank-one operator
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along the lattice Λ. In addition, we use the fact that the spreading function
of a rank-one operator is the STFT. Altogether we therefore have

Sg,Λ =
1
|Λ|

∑

λ◦∈Λ◦
〈g, π(λ◦)γ〉π(λ◦) (66)

with γ ∈ S0(Rd). The last equation (66) is the so-called Jannsen representa-
tion of Sg,Λ which decomposes Sg,Λ into an absolutely convergent series of
time-frequency shifts. In (66) we used implicitely another pleasant property
of S0(Rd).

Lemma 38: Let g, γ ∈ S0(Rd) and Λ a lattice in Rd × R̂d. Then (g, γ)
satisfies Tolimieri-Orr’s condition (A’):

∑

λ∈Λ

|〈g, γλ〉| < ∞, (A’).

This stability of Condition (A’) for g, γ ∈ S0(Rd) with respect to a variation
of the lattice makes Feichtinger’s algebra such an important object in Gabor
analysis. In a recent work Feichtinger and Kaiblinger have drawn some deep
consequences from this fact. Roughly speaking, they proved that the set of
functions in S0(Rd) which generate a Gabor frame is ”open” [14].

We close our discussion of the Gabor frame operator with a striking
result of Gröchenig/Leinert on the quality of the canonical dual of a Gabor
system G(g, Λ) generated by a window g ∈ S0(Rd).

Theorem 39: Let g ∈ S0(Rd) and G(g, Λ) a Gabor frame of L2(Rd). Then
γ0 = S−1

g,Λg is in S0(Rd).

The proof is based on a noncommutative version of Wiener’s lemma for
the Banach algebra `1(Λ) with twisted convolution ] as product, and non-
commutative involution ∗ as described above for the spreading function of
a product of two operators in L(S0, S

′
0) and the spreading function of the

adjoint of an operator in L(S0, S
′
0). A special case of their main result is

that (`1, ], ∗) is a symmetric Banach algebra. In this context the Wiener
lemma is expressed as the inverse-closedness of the Banach algebra

A(Λ) = {A ∈ B(L2(Rd)) |A =
∑

λ∈Λ

aλπ(λ), (aλ) ∈ `1(Λ)}
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of absolutely convergent time-frequency series in the C∗-algebra C∗(Λ) gen-
erated by time-frequency shifts {π(λ) : λ ∈ Λ}. In other words, the argu-
ment is based on the highly non-trivial fact that an element of A(Λ) which
is invertible in C∗(Λ) has its inverse already in A(Λ).

9. Conclusion and outlook

It was the goal of this report to show how practical questions in signal pro-
cessing lead to a very powerful mathematical model, the so-called Gabor
frames, that induce highly structured operators which, in turn, open excit-
ing viewpoints to advanced concepts in harmonic analysis. These concepts,
such as the Segal algebra S0(Rd), the Gelfand triple, and the spreading func-
tion provide deep insights into general properties of such a class of operators
and relate Gabor analysis to other fields of physics and mathematics.

We have tried to give a consistent overview of the main tools of time-
frequency analysis that are used to study signal expansions by means of
Gabor systems. At the same time we also wanted to present state-of-the-
art techniques for extracting the relevant parts of the models in order to
draw a more transparent picture of the topic.

The central object of this paper is the Gabor frame-type operator. On
one hand, it reduces to a sparse matrix in the finite dimensional case and
can be treated by standard numerical methods. On the other hand, it is a
special case of a class of Λ-periodic time-frequency operators that have a
very attractive description in form of symbols over suitable function and
distribution spaces. Specifically, the spreading function, the KN symbol and
the Gelfand triple (S0, L

2, S′0)(Rd) were introduced and studied to embed
those results of the Gabor frame-type operator that initiated and popu-
larized the Gabor theory in the mid nineties [9,28] in a larger framework
of time-frequency analysis. The original ideas go back to the fundamental
paper of Feichtinger and Kozek in 1998 [15]. These ideas have been evolv-
ing over time and other results, many of them nicely presented in [25],
contributed to a better perception.

In the final part of the last section we returned to the central object, the
Gabor frame-type operator, in order to stress the close connection between
Gabor analysis and advanced time-frequency topics. The attentive reader,
however, has certainly realized that it was not intended to wrap up all the
relevant results. Indeed, the story is far from being complete and far from

45



August 5, 2005 22:6 WSPC/Lecture Notes Series: 9in x 6in FGabsingFinal

being ended. As a final taste in this sense, we shortly describe two more
interesting topics. The first one is about so-called Gabor multipliers. The
second one deals with the question of sampling time signals and studies
Gabor expansions when increasing the sampling rate, a problem which has
recently been analyzed by Kaiblinger.

In [17] Feichtinger and Nowak describe the foundation of a theory of
(regular) Gabor multipliers, which are operators obtained by going from
signal domain to some transform domain, and applying a pointwise multi-
plication operator before resynthesis. More generally speaking,

Definition 40: Assume we have g1, g2 ∈ L2(Rd), Λ a lattice of Rd × R̂d

and let m = (m(λ))λ∈Λ be a complex-valued sequence on Λ. Then the
Gabor multiplier associated to the triple (g1, g2,Λ) with (upper) symbol m
is defined by

Gm(f) := Gg1,g2,Λ,m(f) =
∑

λ∈Λ

m(λ)〈f, π(λ)g1〉π(λ)g2. (67)

Therefore Gabor multipliers are infinite linear combinations of rank-one
operators f 7→ 〈f, π(λ)g1〉π(λ)g2 with coefficients given by (m(λ))λ∈Λ. The
function g1 is called the analysis window and g2 the synthesis window of
the Gabor multiplier Gm. A basic question arises naturally in this context.
Namely, how the properties of the Gabor multiplier Gm depends on the de-
cay of the multiplier sequence (m(λ))λ∈Λ, the time-frequency concentration
of g1, g2 and the time-frequency lattice Λ. In general g1 and g2 should be
Bessel atoms with respect to the given lattice Λ and the strong symbol m is
assumed to be bounded. In this case the coefficient mapping Cg1 using the
analysis window g1, mapping f to the sequence of sampling values Vgf over
Λ, is bounded from L2(Rd) to `2(Λ), and also the synthesis mapping Dg2 ,
mapping a sequence c = (c(λ))λ∈Λ to

∑
λ∈Λ c(λ)π(λ)g2, is bounded from

`2(Λ) to L2(Rd) and thus the Gabor multiplier Gm = Dg2Cg1 is bounded
on L2(Rd).

After our discussion of Gabor frame-type operators the interested reader
will already conjecture that Gabor multipliers Gm with g1 and g2 have very
nice properties. Furthermore, the terminology of Gelfand triples allows an
elegant formulation of statements about Gabor multipliers. The following
result is one of the main results in [17].

Theorem 41: For every pair (g1, g2) in S0(Rd), and any lattice Λ ∈
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Rd × R̂d, the mapping from the multiplier (m(λ))λ∈Λ to the associated
Gabor multiplier Gg1,g2,m,Λ maps the Gelfand triple (`1, `2, `∞)(Λ) into
the bounded operators with kernel in the corresponding Gelfand triple
(S0, L

2, S′0)(Rd × R̂d).

For more information about Gabor multipliers, e.g., their eigenvalue behav-
ior, and their relation to time-varying filters we refer the reader to [17].

The work [30] of Kaiblinger on the approximation of the dual Gabor
window γ of a Gabor frame G(g, Λ) in L2(Rd) is interesting for two reasons:
On one hand, it shows that our study of finite-dimensional Gabor frames
is not only a motivation for the treatment of Gabor frames for L2(Rd). On
the other, hand all his results about approximation of a continuous function
by finite methods only work for a Gabor atom g in S0(Rd).

Kaiblinger’s result are based on a synthesis of fast algorithms for the
computation of dual window of a Gabor frame in Cn and on the fact that
these Gabor frames for Cn are obtained in a simple way from the original
Gabor frame G(g, Λ). He also showed that the approximate dual windows
converge not just in L2(Rd) but indeed in S0(Rd), which implies the con-
vergence of the corresponding frame operators in the operator norm on
L2(Rd). For further information we refer to [30].
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26. K. Gröchenig and M. Leinert. Wiener’s Lemma for twisted convolution and

Gabor frames. J. Amer. Math. Soc., 17(1):1–18, 2003.
27. C. Heil. A basis theory primer. Unpublished Manuscript, July 1997.

48



August 5, 2005 22:6 WSPC/Lecture Notes Series: 9in x 6in FGabsingFinal

28. A. J. E. M. Janssen. Duality and biorthogonality for Weyl-Heisenberg frames.
J. Four. Anal. and Appl., 1(4):403–436, 1995.

29. A. J. E. M. Janssen. Classroom proof of the density theorem for Gabor
systems. Unpublished Manuscript, 2005.

30. N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor
window. J. Fourier Anal. Appl., 11(1):25–42, 2005.

31. J. G. Kirkwood. Quantum statistics of almost classical assemblies. Phys. Rev.,
II. Ser. 44:31–37, 1933.

32. S. Li and H. Ogawa. Pseudoframes for subspaces with applications.
J. Four. Anal. and Appl., 10(4):409–431, 2004.

33. E. H. Lieb. Integral bounds for radar ambiguity functions and Wigner dis-
tributions. J. Math. Phys., 31(3):594–599, 1990.

34. F. Low. Complete sets of wave packets. In C. DeTar, editor, A Passion for
Physics - Essay in Honor of Geoffrey Chew, pages 17–22. World Scientific,
Singapore, 1985.

35. Y. I. Lyubarskii. Frames in the Bargmann space of entire functions.
Adv.Soviet Math., 429:107–113, 1992.

36. S. Qiu and H. G. Feichtinger. Discrete Gabor structures and optimal repre-
sentation. IEEE Trans. Signal Proc., 43(10):2258–2268, 1995.

37. A. Ron and Z. Shen. Frames and stable bases for subspaces in L2(Rd): the
duality principle of Weyl-Heisenberg sets. In M. Chu, D. Brown and D. Elli-
son, editors, Proceedings of the Lanczos Centenary Conference Raleigh, NC,
pages 422–425. SIAM Pub., 1993.

38. A. Ron and Z. Shen. Weyl-Heisenberg frames and Riesz basis on L2(Rd).
Duke Math. J., 89(2):273–282, 1997.

39. W. Rudin. Functional Analysis. Mc Graw-Hill, 2nd edition, 1991.
40. K. Seip and R. Wallsten. Density theorems for sampling and interpolation in

the Bargmann-Fock space II. J. reine angewandte Mathematik, 429:107–113,
1992.

41. T. Strohmer. Numerical algorithms for discrete Gabor expansions. In H. G.
Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory
and Applications, pages 267–294. Birkhäuser, Boston, 1998.
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