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Descartes’ rule of signs

René Descartes

Theorem [Descartes].

The number of positive zeros of a real
univariate polynomial does not exceed the
number of sign changes in its sequence of
coefficients. Moreover, it has the same
parity.

Theorem [Sturm].

The number of zeros of a real univariate
polynomial p on the interval (a, b] is given by
V (a)− V (b), with V () the number of sign
changes in its Sturm sequence p, p1, p2, . . ..
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Euclidean algorithm and continued fractions

Starting from f0 := p, f1 := q − (b0/a0)p, form the Euclidean
algorithm sequence

fj−1 = qj fj + fj+1, j = 1, . . . , k , fk+1 = 0.

Then fk is the greatest common divisor of p and q. This gives a
continued fraction representation

R(z) =
f1(z)

f0(z)
=

1

q1(z) +
1

q2(z) +
1

q3(z) +
1

. . . +
1

qk (z)

.
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Generalized Jacobi matrices

J (z) :=



qk (z) −1 0 . . . 0 0
1 qk−1(z) −1 . . . 0 0
0 1 qk−2(z) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . q2(z) −1
0 0 0 . . . 1 q1(z)


.

Remark 1. hj(z) := fj(z)/fk (z) is the leading principal minor of
J (z) of order k − j . In particular, h0(z) = detJ (z).
Remark 2. Eigenvalues of the generalized eigenvalue problem

J (z)u = 0

are closely related to properties of R(z).
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Jacobi continued fractions

In the regular case,

qj(z) = αjz + βj , αj , βj ∈ C, αj 6= 0.

The polynomials fj satisfy the three-term recurrence relation
fj−1(z) = (αjz + βj)fj(z) + fj+1(z), j = 1, . . . , r .

R(z) =
f1(z)

f0(z)
=

1

α1z + β1 +
1

α2z + β2 +
1

α3z + β3 +
1

. . . +
1

αr z + βr

.
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Stieltjes continued fractions

In the doubly regular case,

q2j(z) = c2j , j = 1, . . .

⌊
k
2

⌋
,

q2j−1(z) = c2j−1z, j = 1, . . . , r .

R(z) =
f1(z)

f0(z)
=

1

c1z +
1

c2 +
1

c3z +
1

. . . +
1
T

, where

T :=

{
c2r if |R(0)| < ∞,
c2r−1z if R(0) = ∞.
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Sturm algorithm

Sturm’s algorithm is a variation of the Euclidean algorithm

fj−1(z) = qj(z)fj(z)− fj+1(z), j = 0, 1, . . . , k ,

where fk+1(z) = 0. The polynomial fk is the greatest common
divisor of p and q.
The Sturm algorithm is regular if the polynomials qj are linear.

Theorem [Sturm].

Ind+∞
−∞

(
f1
f0

)
= n − 2V (h0, . . . , hn) where hk is the leading

coefficient of fk .
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Cauchy indices

Definition.

Indω(F ) :=

{
+1, if F (ω − 0) < 0 < F (ω + 0),

−1, if F (ω − 0) > 0 > F (ω + 0),

is the index of the function F at its real pole ω of odd order.

Theorem [Gantmacher].

If a rational function R with exactly r poles is represented by a
series

R(z) = s−1 +
s0

z
+

s1

z2 + · · · , then

Ind+∞
−∞ = r − 2V (D0(R), D1(R), D2(R), . . . , Dr (R)).
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Hankel and Hurwitz matrices

Let R(z) be a rational function expanded in its Laurent series at
∞

R(z) = s−1 +
s0

z
+

s1

z2 +
s2

z3 + · · · .

Introduce the infinite Hankel matrix S :=[si+j ]
∞
i,j=0 and consider

the leading principal minors of S:

Dj(S) := det


s0 s1 s2 . . . sj−1

s1 s2 s3 . . . sj
...

...
...

. . .
...

sj−1 sj sj+1 . . . s2j−2

 , j = 1, 2, 3, . . . .

These are Hankel minors or Hankel determinants.
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Hurwitz determinants

Let R(z) =
q(z)

p(z)
, p(z) = a0zn + · · ·+ an, a0 6= 0,

q(z) = b0zn + · · ·+ bn,

For each j = 1, 2, . . ., denote

∇2j(p, q) := det



a0 a1 a2 . . . aj−1 aj . . . a2j−1

b0 b1 b2 . . . bj−1 bj . . . b2j−1

0 a0 a1 . . . aj−2 aj−1 . . . a2j−2

0 b0 b1 . . . bj−2 bj−1 . . . b2j−2
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . a0 a1 . . . aj

0 0 0 . . . b0 b1 . . . bj


.

These are the Hurwitz minors or Hurwitz determinants.
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Hankel ↔ Hurwitz

Theorem [Hurwitz].

Let R(z) = q(z)/p(z) with notation as above. Then

∇2j(p, q) = a2j
0 Dj(R), j = 1, 2, . . . .

Corollary.

Let T (z) = −1/R(z) with notation as above. Then

Dj(S) = s2j
−1Dj(T ), j = 1, 2, . . . .
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Even and odd parts of polynomials

Let p be a real polynomial

p(z) = a0zn+a1zn−1+. . .+an=: p0(z
2) + zp1(z

2), a0 > 0, ai ∈ IR,

Let n = deg p and m =
⌊n

2

⌋
.

for n = 2m

p0(u) = a0um + a2um−1 + . . . + an−2u + an,

p1(u) = a1um−1 + a3um−2 + . . . + an−3u + an−1,

for n = 2m + 1

p0(u) = a1um + a3um−1 + . . . + an−2u + an,

p1(u) = a0um + a2um−1 + . . . + an−3u + an−1.
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Associated function and the main theorem of stability

Introduce the function associated with the polynomial
p(z) = p0(z2) + zp1(z2)

Φ(u) =
p1(u)

p0(u)

Definition.

A polynomial is Hurwitz stable if all its zeros lie in the open left
half-plane.

Main Theorem of Stability

A polynomial z 7→ p(z) = p0(z2) + zp1(z2) is Hurwitz stable if
and only if

Φ(u) = β +
m∑

j=1

αj

u + ωj
, β > 0, αj , ωj > 0, m =

⌊n
2

⌋
.
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Hurwitz and Lienard–Chipart Theorems

Hurwitz Theorem

A polynomial p of degree n is Hurwitz stable if and only if

∆1(p) > 0, ∆2(p) > 0, . . . , ∆n(p) > 0.

Lienard and Chipart Theorem

A polynomial p of degree n is Hurwitz stable if and only if

∆n−1(p) > 0, ∆n−3(p) > 0, ∆n−5(p) > 0, . . .

and
an > 0, an−2 > 0, an−4 > 0, . . .
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Stable polynomials and Stieltjes continued fractions

Using properties of functions mapping the UHP to LoHP and
the main theorem of stability, one can obtain

Stieltjes criterion of stability

A polynomial p of degree n is Hurwitz stable if and only if its
associated function Φ has the following Stieltjes continued
fraction expansion

Φ(u) =
p1(u)

p0(u)
= c0 +

1

c1u +
1

c2 +
1

c3u +
1

. . . +
1

c2m

,

where c0 > 0 and ci > 0, i = 1, . . . , 2m, and m =
⌊n

2

⌋
.
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Further criteria of stability

Theorem.

A polynomial p of degree n is Hurwitz stable if and only if the
infinite Hankel matrix S = ||si+j ||∞i,j=0 is a sign-regular matrix of

rank m, where m =
⌊n

2

⌋
.

Theorem.

A polynomial f = p(z2) + zq(z2) is stable if and only if its infinite
Hurwitz matrix H(p, q) is totally nonnegative.
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Factorization of infinite Hurwitz matrices

Theorem

If g(z) = g0z l + g1z l−1 + . . . + gl , then

H(p · g, q · g) = H(p, q)T (g), where

T (g) :=



g0 g1 g2 g3 g4 . . .
0 g0 g1 g2 g3 . . .
0 0 g0 g1 g2 . . .
0 0 0 g0 g1 . . .
0 0 0 0 g0 . . .
...

...
...

...
...

. . .


.

Here we set gi = 0 for all i > l .
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Another factorization

Theorem

If the Euclidean algorithm for the pair p, q is doubly regular,
then H(p, q) factors as

H(p, q) = J(c1) · · · J(ck )H(0, 1)T (g),

J(c) :=



c 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 c 1 0 . . .
0 0 0 0 1 . . .
0 0 0 0 c . . .
...

...
...

...
...

. . .


H(0, 1) =



1 0 0 0 . . .
0 0 0 0 . . .
0 1 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .


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Stable polynomials and Jacobi continued fractions

”Jacobi” criterion of stability

A polynomial p of degree n is Hurwitz stable if and only if its
associated function Φ has the following Jacobi continued
fraction expansion

Φ(u) =
p1(u)

p0(u)
= −αu+β+

1

α1u+β1−
1

α2u+β2−
1

. . . +
1

αnu+βn

,

where α ≥ 0, αj > 0 and β, βj ∈ IR.
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Other topics

Stielties, Jacobi, other continued fractions.
Padé approximation

Orthogonal polynomials. Moment problems

Nevanlinna functions

Pólya frequency sequences and functions

Laguerre-Pólya class and its generalizations

Total nonnegativity

Matrix factorizations

Hurwitz rational and meromorphic functions
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Zero localization

... is everywhere

Zeros of entire and meromorphic functions from number
theory (e.g., Riemann ζ-function and other L-functions)

Zeros of partition functions for Ising, Potts and other
models of statistical mechanics (Lee-Yang program)

Zeros arising as eigenvalues in matrix/operator eigenvalue
problems (e.g., random matrix theory)

Recent generalizations of stability and hyperbolicity to the
multivariate case and applications to Pólya-Schur-Lax type
problems (Borcea, Brändén, B. Shapiro, etc.)
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