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1. The Burgers equation

I Friction and viscosity

Real fluids are never completely inviscid. They can be weakly viscous,
with a so small viscosity that inviscid dynamics is expected to provide a
good approximation.

Viscous dissipation is related to friction forces between the different slices
of fluid : it can be expressed in terms of the stress tensor (cf for instance
the Navier-Stokes equations).

Even negligible, the viscosity will play a role, especially for singular
solutions, selecting physically admissible singularities.

Note that, for multidimensional system of conservation laws, this
property is no more known to hold.
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I Physical features of the Burgers equation

By analogy, we introduce a viscous approximation of the Hopf
equation, referred to as Burgers equation :

∂tu + u∂xu =
ε

2
∂2xxu,

u|t=0 = u0 ,
(1)

where ε is a small parameter.

Multiplying this equation by u and integrating with respect to t and x ,
we get

1

2

∫
u2(t, x)dx +

ε

2

∫ t

0

∫
(∂xu)2(s, x)dxds =

1

2

∫
u2
0(x)dx ,

provided that u decays sufficiently at infinity.
The entropy (also called energy in this unphysical context) is dissipated
and the evolution is irreversible. We further have an explicit formula for
the entropy dissipation.
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For fixed ε, we expect that

• the regularizing effect of the heat equation should master the
nonlinearity ;

• shocks should be smooth in viscous profiles of thickness
√
ε.

We will actually prove the existence and uniqueness of a global solution
uε for any continuous and bounded initial data u0. The maximum
principle will further provide a uniform bound on uε.

As ε tends to 0, we expect that

• the sequence (uε) should converge (up to extraction) in some weak
sense ;

• any limit point should satisfy the Hopf equation.

We will establish this convergence and will further show that this
approximation selects a unique weak solution of the Hopf equation.

On this basic example, the proofs are relatively elementary since the
solutions to the Burgers equation can be computed almost explicitly.



Viscous approximation : the Burgers equation

I The Hopf-Cole transformation

Let φ be some (classical) nonnegative solution of the heat equation

∂tφ−
ε

2
∂2xxφ = 0.

Define U by φ(t, x) = exp(−λU(t, x)). Then

∂tφ−
ε

2
∂2xxφ = −λ exp(−λU)

(
∂tU +

1

2
(ελ)(∂xU)2 − ε

2
∂2xxU

)
= 0

Define u = ∂xU. Then

∂tu +
1

2
(ελ)∂x(u2)− ε

2
∂2xxu = 0

If ελ = 1, u is a solution to the Burgers equation.
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Our strategy to solve the Burgers equation is therefore

• to compute the initial data φ0

φ0 = exp(−1

ε
U0) with U0(x) =

∫ x

−∞
u0(y)dy

which is well defined if u0 is smooth and rapidly decaying ;

• to solve the heat equation with initial data φ0

• to retrieve the solution of the Burgers equation by taking some
logarithmic derivative of φ :

u = −ε∂xφ
φ
.
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2. The heat equation

I Convolution and heat kernel

Since the heat equation is linear, all solutions can be obtained from the
Green function G , i.e. from the fundamental solution of the heat
equation having the Dirac mass as initial data

∂tG −
ε

2
∂xxG = 0,

G|t=0 = δ .
(2)

It is indeed easy to check that the function φ defined by convolution

φ(t, x) =

∫
G (t, x − y)φ0(y)dy

satisfies the heat equation, and the initial condition φ(0, x) = φ0(x).
(The formulation is not completely correct since G|t=0 is not a function,
but it can be made rigorous using the convolution of distributions.)



Viscous approximation : the Burgers equation

I Self-similar solutions

We will seek G as a self-similar solution of the form

G (t, x) =
1√
εt

g

(
x√
εt

)
.

This choice is indeed consistent with

• the scaling invariance of the heat equation
Let u ≡ u(t, x) be a solution of the heat equation

∂tu −
ε

2
∂2xxu = 0 , u|t=0 = u0 .

Then, for any λ ∈ R, uλ ≡ u(λ2t, λx) is also a solution with initial
data uλ(0, x) = u0(λx) .

• the particular form of the initial data

1√
εt

g

(
x√
εt

)
→ δ in the sense of distributions as t → 0

for any fixed ε and any probability density g .
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Easy computations lead then to the ordinary differential equation

−ε
2

1

(εt)3/2
g

(
x√
εt

)
− ε

2

x

(εt)5/2
g ′
(

x√
εt

)
− ε

2

1

(εt)3/2
g ′′
(

x√
εt

)
= 0

which can be rewritten

g(ξ) + ξg ′(ξ) + g ′′(ξ) = 0 .

One can check that Gaussian distributions satisfy that ODE. The
profile g has further to be normalized.

The Green kernel is therefore given by

G (t, x) =
1√

2πεt
exp

(
− x2

2εt

)
.
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I Maximum principle and regularity

From the formula

φ(t, x) =

∫
1√

2πεt
exp

(
− (x − y)2

2εt

)
φ0(y)dy ,

we deduce that φ is bounded by ‖φ0‖∞, and that φ(t) ∈ C∞(R) for all
t > 0. Indeed the integrand can be derived infinitely many times, and
Lebesgue’s theorem shows that

∂kx φ(t, x) =

∫
1√

2πεt
∂kx

(
exp

(
− (x − y)2

2εt

))
φ0(y)dy .

The regularity of the solution does not depend on the regularity of the
initial data. This smoothing effect is typical from parabolic PDEs.
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I Uniqueness

As the heat equation is linear, it is enough to prove that zero is the
only solution with zero initial data.

For the sake of simplicity, we will consider only solutions which decay at
infinity (but uniqueness still holds in a larger class of solutions).
Furthermore, without loss of generality, we can assume that these
solutions are smooth.

Multiplying by φ the equation

∂tφ−
ε

2
∂2xxφ = 0

and integrating with respect to t and x leads to the energy equality

1

2

∫
φ2(t, x)dx +

ε

2

∫∫
(∂xφ)2(s, x)dsdx =

1

2

∫
φ20(x)dx = 0

from which we deduce that φ is identically zero.
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3. The inviscid limit

Using the results on the heat equation together with the Hopf-Cole
transformation, we get the existence of a unique solution uε to the
Burgers equation (1) for any fixed ε > 0, and any nice initial data u0.
The next step is to describe the asymptotic behavior of uε as ε→ 0.

Proposition. In the limit ε→ 0, (uε) converges (in a weak sense) to a
function u, bounded almost everywhere on R+ × R. Furthermore,

• Discontinuity points of u are countable ;

• u is a global solution to the Hopf equation in the sense of
distributions ;

• u satisfies the Lax-Oleinik condition (which guarantees uniqueness)

∂xu(t, .) ≤ 1

t
.
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I A stationary phase argument

The proof is based on the explicit formula for uε :

uε(t, x) =

∫
u0(y)dµε(t, x , y)

where the probability measure µε is defined by

dµε(t, x , y) =

exp

(
− 1
εU0(y)−

(
x−y√
2εt

)2)
dy

∫
exp

(
− 1
εU0(y)−

(
x−y√
2εt

)2)
dy

.

In the limit ε→ 0, the measure µε shall concentrate on minimal points
of the phase

Ψ(t, x , y) = U0(y) +
1

2t
(x − y)2 .
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I Discontinuity points

As Ψ(t, x , ·) is smooth and tends to infinity at ±∞, the minimum of
Ψ(t, x , ·) is attained on a compact set

I (t, x) ⊂ {y ∈ R / u0(y)− 1

t
(x − y) = 0} .

so that we can define y−(t, x) = min I (t, x) and y+(t, x) = max I (t, x) .

What can be proved is the following elementary property

∀x1 < x2, y+(t, x2) ≥ y+(t, x2) ≥ y+(t, x1) ≥ y+(t, x1)

so that, for any t > 0, the functions y+(t, ·) and y−(t, ·) are non
decreasing and coincide outside from a countable set St .

Outside from St , µε(t, x , ·) therefore concentrates on a Dirac mass at
y−(t, x) = y+(t, x).
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I Stability of the integral equation

In other words, for any t > 0, (uε(t, .)) converges on R \ St towards the
function u(t, .) defined by

u(t, x) = u0(y±(t, x)) =
1

t
(x − y±(t, x)) .

Starting from the weak formulation of the Burgers equation∫ +∞

0

∫ (
uε∂tϕ+

1

2
u2
ε∂xϕ+

ε

2
uε∂xxϕ

)
dtdx = −

∫
u0ϕ|t=0dx ,

and taking limits as ε→ 0 leads then to∫ +∞

0

∫ (
u∂tϕ+

1

2
u2∂xϕ

)
dtdx = −

∫
u0ϕ|t=0dx

which is the weak formulation of the Hopf equation.
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I Lax-Oleinik’s condition

The function x 7→ y+(t, x) is continuous outside from the countable set
St , and locally bounded. It can be therefore considered as a distribution,
and has weak derivatives. As x 7→ y+(t, x) is non decreasing,

∂xy+ ≥ 0 in the sense of distributions.

From the identity defining the minimal points of the phase

u0(y+(t, x))− 1

t
(x − y+(t, x)) = 0

we then deduce the Lax-Oleinik condition

t∂xu = 1− ∂xy+ ≤ 1 in the sense of distributions.

Proving that this condition guarantees uniqueness is much more difficult
and is beyond the scope of this lecture.


	1. The Burgers equation
	 Friction and viscosity 
	Physical features of the Burgers equation
	The Hopf-Cole transformation

	2. The heat equation
	Convolution and heat kernel
	Self-similar solutions
	Maximum principle and regularity 
	Uniqueness

	3. The inviscid limit
	A stationary phase argument
	Discontinuity points
	Stability of the integral equation
	 Lax-Oleinik's condition


